

British Journal of Pharmacology

**Instructions to Authors
Nomenclature Guidelines**

Index

Volumes 99–101

1990

Edited for the British Pharmacological Society by

A.T. Birmingham (*Chairman*)
R.W. Horton (*Secretary*)
W.A. Large (*Secretary*)

EDITORIAL BOARD

J.A. Angus Prahran, Australia
M.L.J. Ashford Cambridge
G.W. Bennett Nottingham
T. Bennett Nottingham
W.C. Bowman Glasgow
Alison F. Brading Oxford
S.D. Brain London
K.T. Bunce Ware
G. Burnstock London
K.D. Butler Horsham
M. Caulfield London
M.K. Church Southampton
S.J. Coker Liverpool
R.A. Coleman Ware
M.G. Collis Macclesfield
G.A. Cottrell St Andrews
A.J. Cross London
V. Crunelli London
T.C. Cunnane Oxford
A.C. Dolphin London
A. Dray London
J.M. Edwardson Cambridge
W. Feniuk Ware
J.R. Fozard Basle, Switzerland
L.G. Garland Beckenham
A. Gibson London
A.R. Green London
P.E. Hicks Leuville-sur-Orge, France
S.J. Hill Nottingham
J.C. Hunter Cambridge
K.A. Kane Glasgow
P. Keen Bristol
P. Leff Loughborough
D. Lodge London
J.C. McGrath Glasgow
R. McMillan Macclesfield
J. Maclagan London
W. Martin Glasgow
D.N. Middlemiss Harlow
R.C. Miller Strasbourg, France
R.J. Naylor Bradford
C.D. Nicholson Newhouse
D.A.A. Owen London
C.P. Page London
B.K. Park Liverpool
A.N. Payne Beckenham

F.L. Pearce London
F.F. Roberts Greenford
M.H.T. Roberts Cardiff
P.J. Roberts Southampton
C. Robinson Southampton
G.J. Sanger Harlow
M.A. Simmonds London
J.M. Sneddon Sunderland
M. Spedding Edinburgh
I.P. Stolerman London
P.V. Taberner Bristol
D.A. Terrar Oxford
M.B. Tyers Ware
S.P. Watson Oxford
A.H. Weston Manchester
B.J.R. Whittle Beckenham
T.J. Williams London
J.M. Young Cambridge

CORRESPONDING EDITORS

P.R. Adams Stony Brook, U.S.A.
C. Bell Melbourne, Australia
K.P. Bhargava Lucknow, India
F.E. Bloom La Jolla, U.S.A.
A.L.A. Boura Clayton, Australia
N.J. Dun Toledo, U.S.A.
R.F. Furchtgott New York, U.S.A.
T. Godfraind Brussels, Belgium
S.Z. Langer Paris, France
R.J. Miller Chicago, U.S.A.
R.C. Murphy Denver, U.S.A.
E. Muscholl Mainz, F.R.G.
R.A. North Portland, U.S.A.
M. Otsuka Tokyo, Japan
M.J. Rand Melbourne, Australia
S. Rosell Södertälje, Sweden
P. Seeman Toronto, Canada
L. Szekeres Szeged, Hungary
B. Uvnäs Stockholm, Sweden
P.A. Van Zwieten Amsterdam,
Netherlands
V.M. Varagić Belgrade, Yugoslavia
G. Velo Verona, Italy
Wang Zhen Gang Beijing, China
M.B.H. Youdim Haifa, Israel

Papers will be considered for publication on all aspects of pharmacology, including chemotherapy.

Manuscripts (two copies) should be sent to Editorial Office, British Journal of Pharmacology, St. George's Hospital Medical School, Cranmer Terrace, London SW17 0RE. Authors should consult the Instructions to Authors in Vol. 102, 553-559 (1991) and the Nomenclature Guidelines for Authors in Vol. 102, 560-561 (1991).

The *British Journal of Pharmacology* is published monthly by the Scientific & Medical Division, Macmillan Press Ltd.

The journal is covered by *Current Contents*, *Excerpta Medica* and *Index Medicus*.

All business correspondence and reprint requests should be addressed to the Scientific & Medical Division, Macmillan Press Ltd., Hounds-mills, Basingstoke, Hampshire RG21 2XS, UK. Telephone: (0256) 29242; Fax: (0256) 842754.

Annual subscription prices for 1991 EEC £375, elsewhere £415/US\$750 (sterling rate is definitive). Orders must be accompanied by remittance. Cheques should be made payable to Macmillan Press, and sent to: Macmillan Press Ltd., Subscription Department, Brunel Road, Hounds-mills, Basingstoke, Hampshire RG21 2XS, UK.

Overseas subscribers may make payments into UK Post Office Giro Account No. 5192455. Full details must accompany the payment.

Second Class postage paid at Rahway NJ. US Mailing Agent: Mercury Airfreight International Ltd., Inc., 2323 Randolph Avenue, Avenel, Rahway, New Jersey, NJ 07001, USA.

Enquiries concerning advertising space or rates should be addressed to: Michael Rowley, Advertisement Manager, Macmillan Press Ltd., 4 Little Essex Street, London WC2R 3LF. Telephone: 071 836 6633; Fax: 071 379 4204.

All rights of reproduction are reserved in respect of all papers, articles, illustrations, etc., published in this journal in all countries of the world.

Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by Macmillan Press Ltd for libraries and other users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of \$3.50 per copy is paid directly to CCC, 21 Congress St., Salem, MA 01970, USA.

© The British Pharmacological Society & Macmillan Press Ltd, 1991.
ISSN 0007-1188

0007-1188/91 \$3.50 + \$0.00

INSTRUCTIONS TO AUTHORS

With effect from 1 January 1991

The *British Journal of Pharmacology* welcomes contributions in all fields of pharmacology for publication as full papers or as high priority Special Reports.

Papers should normally be based on new results obtained experimentally and should constitute a significant contribution to pharmacological knowledge. Papers which reassess pharmacological concepts based on earlier results will also be considered as will purely theoretical papers. Papers dealing only with descriptions of methods are acceptable if new principles are involved.

Contributions that have already been published, or accepted or are under consideration for publication, with essentially the same content will not be considered. This restriction does not apply to results published as abstracts of communications, letters to editors, or as contributions to symposia, provided that the submission adds significantly to the information available in the previously published contribution.

Papers are only accepted if accompanied by a Declaration which must be signed by all Authors. This Declaration concerns the originality of the submitted paper and assigns the copyright of all papers accepted for publication to Macmillan Press Ltd. on behalf of the British Pharmacological Society. See pages 6 and 7 for details.

The Journal will not consider papers which describe experiments on animals which do not fall clearly within the current laws governing animal experimentation in the United Kingdom. Authors must make it clear that the procedures they use were as humane as possible and the doses (initial and subsequent) of anaesthetics and analgesics should be clearly stated; the method of assessing anaesthesia, particularly after the administration of skeletal muscle relaxants (neuro-muscular blocking drugs), must be well defined. The Society has an Ethics Committee which can be consulted by authors through the Secretaries to the Editorial Board.

When investigations on normal human subjects are reported, evidence of approval by a local Ethics Committee must be given. Papers concerned with clinical trials or investigations of the effects of drugs on patients are not appropriate for this Journal.

Authors are strongly urged to keep their manuscripts as short as they reasonably can. An effective way is to reduce the Discussion and the number of figures to a minimum and to avoid repetition of information that has already been published. Authors should remember that a reader may be influenced by literary style and will appreciate simple but accurate prose.

It is important to note that failure to comply with 'Instructions to Authors' may lead to considerable editorial delays.

FULL PAPERS

Manuscripts must be typed on one side of A4 paper. Words at the end of lines should not be divided because they may become incorrectly hyphenated. Handwritten characters or symbols (e.g. Greek letters) should be spelled out in full in the margin. Papers in recent issues of the *British Journal of Pharmacology* should be consulted for the general layout of the paper and also for details. The following subsections are used:

1. Title page
2. Summary
3. Introduction
4. Methods
5. Results

6. Discussion and conclusions
7. Acknowledgements
8. List of references
9. Tables
10. Figures and captions

The type must not be smaller than 12 pitch or 10 point. Each section must be typed in double spacing with margins of not less than 2.5 cm all round and each page should be numbered. The original and one copy of the typescript should be supplied.

Title page

The title should normally contain no more than 150 characters and should not consist of a sentence (statement or conclusion) or be interrogative. A short running title containing not more than 50 characters and spaces is also required. The title page should include the names of authors and their appropriate addresses. It should be made clear which address relates to which author. Authors' present addresses differing from those at which the work was carried out should be given as footnotes on the title page and referenced at the appropriate place in the author list by superscript numbers. A footnote may also be used to indicate the author to whom correspondence should be sent. The use of footnotes for any other reason is not allowed. If the address to which proofs should be sent is not that of the first mentioned author, clear instructions should be given in a covering note and not on the title page. The title page should be paginated as page 1 of the paper.

Summary

The summary will be printed at the beginning of the paper. It should not exceed 5% of the length of the paper and should contain a brief account of the problem, the methods, results and the conclusions. It should be arranged in numbered and concise paragraphs. Up to ten key words or phrases of two to three words (including names and terms used in the title) should be displayed at the end of the summary. These may be selected from 'Medical Subject Headings' issued by *Index Medicus*. Key words will be used to compile the annual index. The quality of the index will thus be determined by the appropriateness of the key words. Avoid unhelpful or unqualified terms such as 'rat', 'drug' etc.

Introduction

The introduction should give a short and clear account of the background of the problem and the rationale of the investigation. Only previous work that has a direct bearing on the present problem should be cited.

Methods

The methods must be described in sufficient detail to allow the experiment to be interpreted and repeated by the reader. However, detailed repetition of methods which have been adequately described previously should be avoided and references given, although a brief outline is often helpful.

Drugs should be listed in a separate paragraph. Their names should be 'approved names' as published previously in British Approved Names, 1990 (HMSO). If a drug has no 'approved name' its chemical name must be used and the rules set out in the current *Handbook for Chemical Society Authors*

(London, Chemical Society) observed, or its structural formula given. Cumbersome chemical names should be suitably abbreviated for later reference in the paper.

The doses of drugs should be given as unit weight per body weight, e.g. mmol kg⁻¹ or mg kg⁻¹; concentrations should be given in terms of molarity, e.g. nM or μ M.

Reference should be made to any statistical analyses that have been performed on the results in order, for example, to determine the significance of differences between results obtained under different experimental conditions.

Results

The description of the experimental results should be succinct but, nevertheless, in sufficient detail to allow the experiments to be repeated by others. Typical single experiments may be presented with a clear statement that *n* number of similar experiments had similar results. Where appropriate, however, the mean results with confidence limits or with standard errors of the means and the number of observations should be given. Statistical tests of significance should be performed where appropriate. The results of such tests should be stated as the numerical value of the probability (*P*) that is calculated, with any necessary clarification (e.g. one-tail or two-tail test).

Every effort should be made to avoid unnecessary repetition of data in the text, tables and figures. Conclusions and theoretical considerations should not be elaborated in this section.

Discussion

The purpose of the discussion is to present a brief and pertinent interpretation of the results against the background of existing knowledge. Any assumptions on which conclusions are based must be stated clearly. A mere recapitulation of the results is not acceptable. A review-like treatment, which reduces the impact on the reader, should also be avoided. The main conclusion should be conveyed in a final paragraph.

Acknowledgements

Acknowledgements should be brief but should include reference to sources of support. Sources of drugs not widely available commercially should be acknowledged.

References

In the text, references to other work should take the form: (Bolton & Kitamura, 1983) or, 'Bolton & Kitamura (1983) showed that ...'. If there are more than two authors, the first author's name should be given followed by *et al.* (Bülbring *et al.*, 1981).

References to 'unpublished observations' or 'personal communications' should be mentioned in the text only, and not included in the list of references. Papers which have been submitted and accepted for publication, should be included in the list of references with the names of the periodicals and 'in press'. A photocopy should normally be submitted with the manuscript. If this is not possible, authors should indicate whether the work cited is an abstract or a full paper. Papers in preparation or which have been submitted but not yet finally accepted for publication must not be included in the list of references.

The reference list at the end of the manuscript must be arranged alphabetically according to the surname of the first author. When the surnames of authors are identical, the alphabetical order of their initials takes precedence over the year of publication. The AUTHORS' names are followed by the year of publication in brackets. If more than one paper by the same authors in one year are cited, a, b, c, etc. are placed after the year of publication, both in the text and in the list of references. The title of the article is given in full, followed by the abbreviated title of the periodical, volume number and first and last page numbers. The abbreviations used for periodicals are

those of the most recent edition of the International List of Periodical Title Word Abbreviations. References to articles in books should consist of names of authors, year of publication, title of article followed by the *title of the book*, the editors, volume number, if any, and page numbers, the place of publication and the names of the publishers. For example:

BOLTON, T.B. & KITAMURA, K. (1983). Evidence that ionic channels associated with the muscarinic receptor of smooth muscle may admit calcium. *Br. J. Pharmacol.*, **78**, 405-416.

BRADING, A.F. (1981). Ionic distribution and mechanisms of transmembrane ion movements in smooth muscle. In *Smooth Muscle: An Assessment of Current Knowledge*, ed. Bülbring, E., Brading, A.F., Jones, A.W. & Tomita, T. pp. 65-92. London: Edward Arnold.

Tables

Each table should be given on a separate page, paginated as part of the paper. Tables should be numbered consecutively with arabic numericals and the number should be followed by a brief descriptive caption, occupying not more than two lines, at the head of the table. The proportions of the text area should be borne in mind when designing the layout of tables. For the sake of clarity, tables should not have more than 120 characters to a line, with spaces between columns counted as four characters. The absolute maximum is 180 characters to a line. Each column should have a heading and the units of measurement should be given in parentheses in the heading. Except in special circumstances, tables should be self-explanatory; the necessary descriptions should be at the bottom of the table.

Figures

To avoid unnecessary Figures, particularly those requiring half-tone reproduction, only critical points of the text should be illustrated. If coloured Figures are desired, the Authors should discuss their requirements with the Secretaries, preferable before submission.

Please note that unsatisfactory Figures will be returned to the Author for revision. The Journal reserves the right to reject a manuscript if the Figures are unacceptable.

Submission Requirements

- The Authors' names and the Figure number must be indicated lightly *in pencil* on the back of each Figure; if necessary, use an adhesive label to avoid damage to the Figure.
- Each copy of the manuscript must be accompanied by one set of labelled Figures (i.e. complete with lettering and numbering, arrows, etc.). An original set and one high quality photocopy will suffice.
- Another original set of Figures identical in size but *without any letters or numbers* must also be supplied for the use of the Publisher. Arrows and event marks on experimental records may be retained, provided they are larger than 3 mm wide. The Publisher will choose the correct style of typeface of an appropriate size to suit the final size of the Figure on the printed page.
- No submitted Figure should exceed 210 x 297 mm (A4).
- Each Figure must be accompanied by a legend; each legend should be typed on a *separate* sheet of paper and paginated as part of the manuscript. Legends should explain the Figures in sufficient detail that, whenever possible, they can be understood without reference to the text.

Line Figures

It is best to submit an original drawing (black ink on heavy white paper or faint blue graph paper) which has been prepared to conform with the style and convention of the

Line width (axes)	Line width (graphs)	Symbol size	Figure will reduce to this percentage of the original size
—	—	Δ□○	100 (No reduction)
—	—	Δ□○	80
—	—	Δ□○	70
—	—	Δ□○	60
—	—	Δ□○	50
—	—	Δ□○	40

Journal, because redrawing is expensive. The original drawing should be lettered in pencil and should be larger (up to two times as large) than the intended size in the Journal.

It is important that the printed symbols and lines should retain their clarity. To achieve this the symbols and lines in original drawings should be sharply defined and of an even density and breadth. When graphs are generated by computer, lines must not show noticeable stepping. Heavier (broader) lines should be used for curves than for the axes of graphs. The table above illustrates line widths and symbol sizes to be used together on a figure and the appropriate reductions in the final printed form.

Symbols should be chosen from the following set

○ ● □ ■ △ ▲ ▽ ▾ ◇ ◆ + ×

The preferred order to shading of histogram columns is: open (clear), closed (solid), cross-hatched, heavily stippled and other (if required).

The explanation of the symbols and column headings should be given in the Figure legend and not as a key in the Figure itself.

Where the Figure is a composite of more than one graph, experimental record, etc., particular care is needed to minimise the spaces between each part, without over-crowding the entire Figure.

Figure 1 illustrates a simple properly-drawn graph in its original form (a) and in its reduced form (b) as it would appear in the Journal.

Photographs and photomicrographs

These should be submitted, twice as large as their intended published size, as good quality prints of high contrast especially where traces and records are illustrated. The originals must not contain arrows, lettering or numbering; these must be accurately located on a duplicate print (or photocopy). When submitting half-tone illustrations for publication authors should remember that it is not possible to reproduce Figures to a finer quality than the original photographs/photomicrographs provided. Critical areas should be marked on a second copy or on an overlay, so that the Printer can choose the correct exposure. Maximum trim areas should be marked on a second copy of the photograph/photomicrograph or on a tracing overlay, i.e. authors should

show any parts of the photographs that could be excluded from the finished half-tone illustration. A calibration bar must be provided on the photomicrograph to ensure that, if the Printer reduces the plate, the scale is reduced in the correct proportion.

Proofs

Two sets of page proofs, will be supplied, one of which should be retained by the authors. The other should be corrected immediately and returned to the Publisher. Corrections should be kept to a minimum.

SPECIAL REPORTS

The purpose of *Special Reports*, which have superseded 'Short Communications', is to provide rapid publication for new and important results which the Editorial Board considers are likely to be of special pharmacological significance. *Special Reports* will have publication priority over all other material and so authors are asked to consider carefully the status of their work before submission.

In order to speed publication there is normally no revision allowed beyond very minor typographical or grammatical corrections. If significant revision is required, the Board may either invite rapid re-submission or, more probably, propose that it be re-written as a Full Paper and be re-submitted for consideration. In order to reduce delays, proofs of *Special Reports* will be sent to authors but **essential corrections must reach the Publisher within 48 hours of receipt**. Authors should ensure that their submitted material conforms exactly to the following requirements.

Special Reports should normally occupy no more than two printed pages of the Journal; two illustrations (Figures or Tables, with legends) are permitted. As a guideline, with type face of 12 pitch and double-line spacing, a page of A4 paper could contain about 400 words. The absolute maximum length of the *Special Report* is 1700 words. For each Figure or Table, please deduct 200 words. The manuscript should comprise a Title page, a Summary consisting of a single short paragraph, followed by key words (maximum of 10), Introduction, Methods, Results, Discussion and References (maximum of 10). In all other respects, the requirements are the same as for Full Papers.

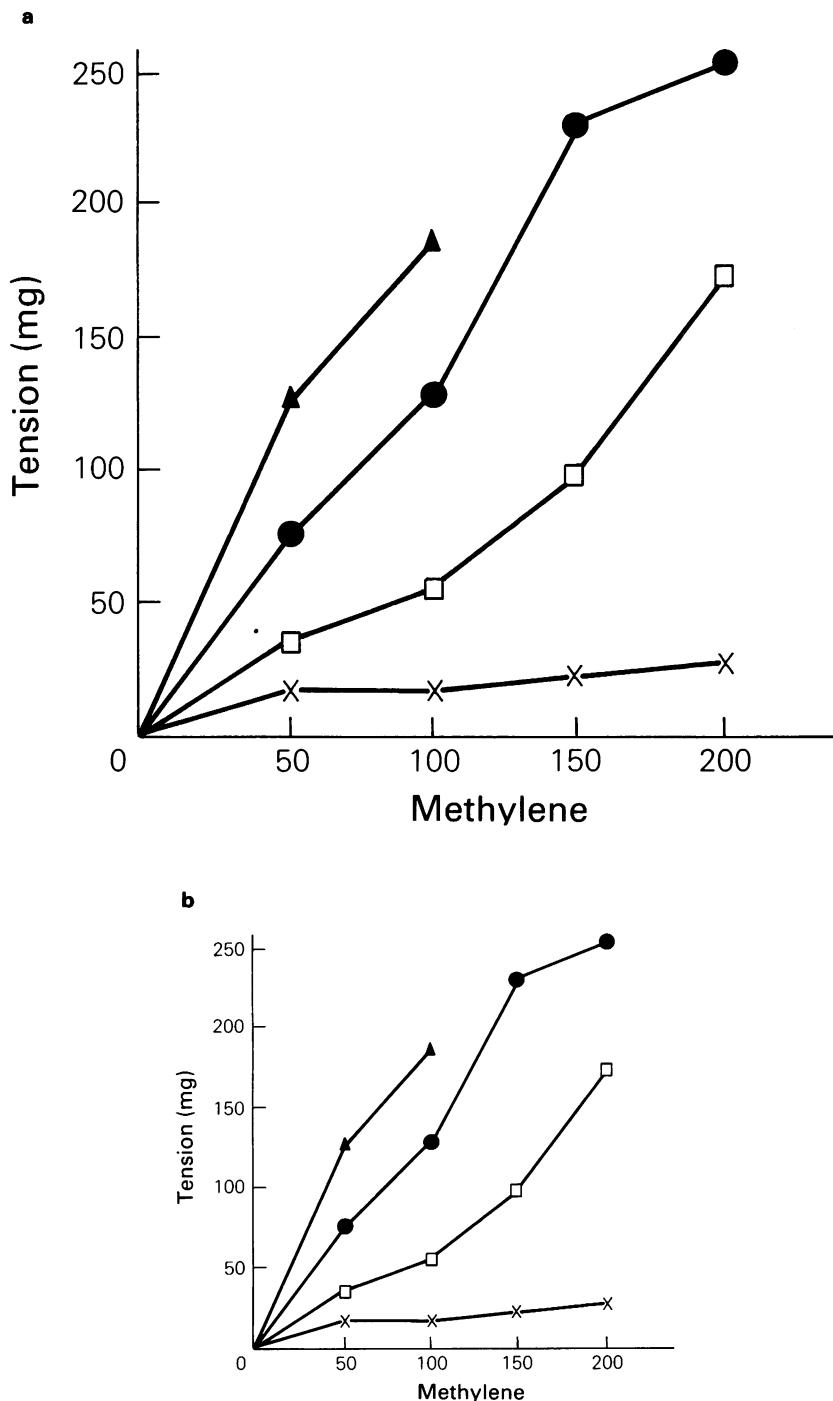


Figure 1. (a) Artwork as drawn. (b) Artwork reduced to 60 per cent of its original size for publication in the Journal.

STATEMENT AND COPYRIGHT AGREEMENT

The following Statement, Declaration and Copyright Agreement should be read carefully by Authors who should then send a copy of their Declaration with their manuscript following the example given in this section.

Statement

1. Submission of a manuscript will be taken to imply that the Authors have obtained permission to publish from (a) their employers or institution, if they have a contractual or

moral obligation to do so, and (b) those whose unpublished work, including papers accepted for publication (i.e. in press), has been cited or those whom the Authors wish to acknowledge as having improved the content or presentation of the manuscript.

2. The Authors must declare that the manuscript contents are original and that they have not already been published or accepted for publication, either in whole or in part, in any form other than as an abstract or other preliminary publication in an unrefereed article. Furthermore, the Authors must verify that no part of the manuscript is under consideration for publication elsewhere and it will not be submitted elsewhere if accepted by the *British Journal of Pharmacology* and not before a decision has been reached by the Editorial Board.

Declaration

I/We assign to Macmillan Press, on behalf of the British Pharmacological Society, the copyright of my/our manuscript, currently entitled

.....
for publication in the *British Journal of Pharmacology*

Furthermore I/We have read, understood and accepted the terms and conditions as set out in Statement and Copyright, Instructions to Authors *Br. J. Pharmacol.* 1991, **102**, 553-559.

Name

Signed

Name

Signed

Name

Signed

Date

Copyright

1. The Authors must agree that, when the above manuscript has been accepted for publication in this Journal, the worldwide copyright shall pass to the Macmillan Press Ltd. on behalf of the British Pharmacological Society, on the understanding that the assignment of copyright will not affect subsisting Patent Rights arrangements pertaining to it. The Authors also accept that, when accepted, the contents will not be published subsequently in the same or similar form in any language without the consent of the Publisher or Editorial Board of the Journal.

This Agreement shall not compromise the Authors' rights to reproduce their own work (see 3 below). For its part, the British Pharmacological Society will protect the interests of Authors in the matter of copyright.

2. The Authors must declare that, where excerpts from copyrighted works have been included, the Authors have obtained written permission from the Copyright owners and have credited the sources in the manuscript. They must also warrant that the article contains no libellous or unlawful statements and does not infringe the rights of others.

3. The Authors will be entitled to publish any part of the paper in connection with any other work by them, provided adequate acknowledgement is given.

4. If it is appropriate, the Authors' employer may sign this Declaration. It is understood that proprietary rights, with the exceptions of Copyrights and Patent Rights are reserved by the signee.

5. If an Author is a U.S. Government employee and the work was done in that capacity, the assignment applies only to the extent allowed by U.S. law. If an Author is an employee of the British Government, HMSO will grant a non-exclusive licence to publish the paper in the Journal, provided British Crown Copyright and user rights (including Patent Rights) are reserved.

6. If for good reason a co-author is unable to sign this Declaration, the other Author or co-authors may sign on his or her behalf, provided that this is clearly stated and on the understanding that they will make every effort to inform the person concerned of the terms of the agreement.

When submitting a manuscript for editorial consideration, Authors should confirm their acceptance of these terms by

signing a Declaration to that effect. The recommended wording is given in the example. No paper will be accepted for publication without such a Declaration being signed by each Author (see paragraph 6 above). If the manuscript is not accepted for publication, the assignment will be null and void.

ABBREVIATIONS AND SYMBOLS**Physico-chemical quantities**

The *British Journal of Pharmacology* uses the SI symbols for units. The following prefixes for multiples of units should be used:

Multiplier	Prefix	Symbol
10^{-1}	deci	d
10^{-2}	centi	c
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p
10^{-15}	femto	f
10^{-18}	atto	a

Multiplier	Prefix	Symbol
10^3	kilo	k
10^6	mega	M
10^9	giga	G
10^{12}	tera	T

Thus, micron = μ m; ångstrom = 0.1 nm. Mixed prefixes are not permissible, thus $m\mu$ g should be ng. The symbols d (10^{-1}) and c (10^{-2}) should be restricted to those occasions on which there is a strongly felt need for them (e.g. cm).

Use of the solidus

The solidus should be avoided as far as possible and the negative index substituted, e.g. mg kg⁻¹ rather than mg/kg; pmol mm⁻² min⁻¹ rather than pmol/mm²/min.

SYMBOLS

Symbols denoting physical quantities are usually printed as italic capitals (indicated by single underline in typescript). A dash over the symbol indicates a mean value; a dot over the symbol indicates a time derivative. Suffixes may be used to indicate 'where' and 'what'. They are printed as inferiors on the line. Multiple suffixes should be avoided if a simpler symbol adequately defined is unambiguous, but if necessary should be separated by commas e.g. P_{A,CO_2} denotes partial pressure of CO₂ alveolar air.

CHEMICAL AND BIOLOGICAL ABBREVIATIONS

Authors should also consult *Nomenclature Guidelines for Authors* contained in this issue of the Journal. The abbreviations listed may be used without definition *except* those for chemicals, drugs and enzymes which must be written in full at first mention in the title, summary and again in the text. At first mention they should be followed by the abbreviation in brackets. Subsequently, the abbreviation alone may be used.

The list of abbreviations for chemical, drug and enzyme names is clearly not comprehensive and includes only a few commonly used examples.

Use abbreviations sparingly as extensive use can make the text hard to follow.

Physico-chemical quantities

Quantity	Preferred unit	Symbol
Amount (of substance)	mole	mol
Capacitance	farad	F
Concentration	moles per litre	M or mol l ⁻¹
Current	ampere	A
Electrical conductance	siemens	S
Electromotive force	volt	V
Flow (blood or other liquid)	litres per second (or min)	1 s ⁻¹ or 1 min ⁻¹
Flow (air or other gas)	litres per second (or min)	1 s ⁻¹ or 1 min ⁻¹
Force	newton	N
Frequency of regular event	hertz	Hz
Length	metre	m
Mass	gram	g
Power	watt	W
Pressure (or partial pressure)	pascal*	Pa
Radioactivity	becquerel or curie	Bq (60 d.p.m.) or Ci (3.7 × 10 ¹⁰ Bq)
Resistance (electrical)	ohm	Ω
Temperature	degree celsius	°C
Time	second (preferred) minute hour	s min h
Volume (blood or other liquid)	litre	l
Volume (air or other gas)	litre	l
Work	joule	J

* mm of mercury (mmHg) are allowed if conventional, and if mercury manometer is used for calibration.

Chemical and biological abbreviations

acetylcholine	ACh	dextro-(absolute configuration)	D-
acetylcholinesterase	AChE	dextro-(optical rotation)	(+)-
adenosine 3' : 5'-cyclic monophosphate	cyclic AMP	diameter	diam.
adenosine 5'-phosphate	AMP	diameter, inside	i.d.
adenosine triphosphatase	ATPase	diameter, outside	o.d.
γ-aminobutyric acid	GABA	diffusion coefficient	D
analysis of variants	F	3,4-dihydroxyphenylalanine	DOPA
adrenaline	Ad	3,4-dihydroxyphenylethylamine	dopamine
analytical standard of reagent	A.R.	direct current	d.c.
purity		disintegration per minute	d.p.m.
anhydrous	anhyd.	dissociation constant	K _D
approximate(ly)	approx.	dissociation constant, negative	pK
approximately equals	≈	logarithm of	
aqueous	aq.	distilled	dist.
arg-vasopressin	AVP	dry ice	solid CO ₂
boiling point	b.p.	edition	edn
bovine serum albumin	BSA	editor(s)	ed.
cardiovascular system	CVS	effective concentration	EC ₅₀
catechol-O-methyl transferase	COMT	effective dose, median	ED ₅₀
central nervous system	CNS	electrocardiogram	ECG
cerebrospinal fluid	CSF	electrocorticogram	ECoG
chi-squared (statistics)	χ ²	electroconvulsive therapy	ECT
clearance	c	electroencephalogram	EEG
coenzyme A	CoA	electromyogram	EMG
concentrated	conc.	electron spin resonance	e.s.r
correlation coefficient	r	endothelial-derived relaxing factor	EDRF
cubic	cu.	epithelial-derived relaxing factor	EpDRF
degree of freedom (statistics)	d.f.	equilibrium constant	K
deoxyribonucleic acid	DNA	equivalent (general use)	equiv.
deoxyribonuclease	DNase	erythrocyte	r.b.c.
		erythrocyte sedimentation rate	ESR
		ethylenediaminetetraacetic acid	EDTA
		excitatory postsynaptic potential	e.p.s.p.
		experiment	expt
		experimental	exptl

fatty acids, nonesterified	NEFA	page/pages	p./pp.
figure(s) (with reference number)	Figure(s)	para-	p-
figure (diagram)	figure	paragraph	para. or ¶
gas-liquid chromatography	g.l.c.	parts per million	p.p.m.
glomerular filtration rate	GFR	per cent	%
haemoglobin	Hb	platelet activating factor	PAF
half-life	$t_{1/2}$	posterior	post.
high-frequency	h.f.	probability (significance level in a statistical test)	P
high performance liquid chromatography	h.p.l.c.	radioimmunoassay	RIA
human serum albumin	HSA	rectus (configuration by the sequence rule)	R
hydrogen-ion concentration	[H ⁺]	red blood corpuscle	RBC
hydrogen-ion activity, negative logarithm of (hydrogen-ion exponent)	pH	relative band speed to front (chromatography)	R_F
6-hydroxydopamine	6-OHDA	relative molecular mass	M_r
5-hydroxyindoleacetic acid	5-HIAA	relative retention time (gas chromatography)	t_r
5-hydroxytryptamine	5-HT	renal plasma flow	RPF
immunoglobulins	IgA, IgD, IgE, IgG, IgM	resistance (respiratory)	R
inhibitor constant	K_i	respiratory conductance	Sgaw
inhibitory concentration	IC ₅₀	revolutions per minute	r.p.m.
inhibitory postsynaptic potential	i.p.s.p.	ribonucleic acid	RNA
insoluble	insol.	section	§
international unit	iu	sedimentation coefficient	s
intra-arterial	i.a.	(ultracentrifugation)	
intracellular fluid	ICF	sinister (configuration by the sequence rule)	S
intradermal	i.d.	soluble	sol.
intramuscular	i.m.	solution	soln.
intraperitoneal	i.p.	Spearman rank coefficient	r_s
intracerebroventricular	i.c.v.	standard deviation: (of observed sample)	s.d.
intravenous	i.v.	standard error (of estimate mean value)	s.e.mean
isotope (atomic mass)	¹³¹ I	standard error (of sampling)	s.e.
e.g. iodine-131		standard temperature and pressure	STP
isotopically substituted compounds e.g.	[¹⁴ C]-ethanol	subcutaneous	s.c.
laevo-(absolute configuration)	L-	sum (statistical): of hypothetical population	Σ
laevo-(optical rotation)	(-)-	of observed sample	S or Σ
lethal dose, median	LD ₅₀	temperature	temp.
leukotriene	LT	thin layer chromatography	t.l.c.
logarithm to base e	log _e or ln	time clock—24 h clock used e.g. 18 h 30 min	t
logarithm to base 10	log ₁₀	time constant	τ
maximum	max.	2-amino-2-hydroxymethyl- propan-1,3-diol	Tris
mean arterial pressure	MAP	ultraviolet	u.v.
mean value of (statistics)	\bar{x}	unit	u
melting point	m.p.	vacuum	vac.
meta	m-	valency	e.g. Fe ²⁺ ; Fe(II)
Michaelis constant	K_M		protoporphyrin
minimum	min.		
mobility (electrophoresis)	<i>m</i>		
monoamine oxidase	MAO		
noradrenaline	NA		
nuclear magnetic resonance	n.m.r.		
number	no. or No.		
number of observations (statistics)	<i>n</i>	volume by volume	v/v
ortho	<i>o</i> -	wavelength	λ
packed cell volume	PCV	weight	wt.
		weight by volume	w/v

NOMENCLATURE GUIDELINES FOR AUTHORS

With effect from 1 January 1991

The Nomenclature Working Party (NWP) of the Editorial Board of the *British Journal of Pharmacology* has consulted many acknowledged experts in an effort to clarify and standardize receptor and other nomenclature systems for use by Editors until the recommendations of the IUPHAR Commission on Receptor Nomenclature and Classification are made known.

NWP is unanimous in its view that, with rare exceptions, the Journal should use spellings, names and abbreviations that had been chosen by international bodies or specialist groups specially convened for the purpose.

1 Definition of receptors and subtypes

In functional studies, pharmacological receptors are to be defined in terms of the relative potencies of agonists and selectivities of antagonists, also by the binding of such ligands, without reference to Second (or other) Messenger Systems.

2 Format of receptor names*

It was agreed that, until the IUPHAR Commission on Receptor Nomenclature and Classification make their recommendations:

(a) Editors will permit with reluctance new nomenclature systems in papers accepted for publication if and only if there are compelling reasons to introduce a new terminology (or modify an accepted one). The criteria upon which the new receptor type or subtype is defined must be given, together with adequate explanations of the relationship between the previous nomenclature (fully referenced) and the proposed one.

N.B. The new nomenclature should not appear in the Title, Short Title or Key-words, unless qualified by the adjective putative, where appropriate (e.g. ... mediated by the putative β_3 -adrenoceptor).

(b) Only well-established and universally accepted subtype names (e.g. muscarinic and nicotinic cholinoreceptors; α - and β -adrenoceptors) will be acceptable without any reference to the originator of these terms. In cases of controversy concerning further subdivision of the subtype, full referencing must be given.

(c) Receptor subtypes should be designated by means of a subscript numeral or capital letter. Some double subscripts (i.e. numeral plus letter) have been introduced but, where possible, further introductions should be avoided and must be fully referenced.

* Note on abbreviations: the preferred style is *capital letters* to designate (a) the first letter of the word (e.g. V, Vasopressin); (b) the first letter of each main syllable or additional word (e.g. NK, neurokinin; GABA, γ -aminobutyric acid; NMDA, N-methyl-D-aspartate). Otherwise, upper and lower case letters should be used (e.g. Enk-IR, enkephalin-like immunoreactivity).

3 Types of receptor

(a) *Acetylcholine receptors* (see Cholinoreceptors).
 (b) *Adrenoceptors* At present, the only adrenoceptor subtypes that should be accepted without a need for very clear definition and full referencing are α_1 -, α_2 -, β_1 - and β_2 -adrenoceptors. Reference to either 'atypical' adrenoceptor or the putative β_3 -adrenoceptor would be permitted, provided fully referenced.

(c) *Bradykinin receptors* For consistency of style with NK receptors, these should be designated BK₁, BK₂. For the present, possible additional types and subtypes of BK receptors should not be designated, except as discussion points.

(d) *Cholecystokinin (CCK) receptors* The principal subtypes are CCK_A and CCK_B receptors, CCK_B receptors being also known as gastrin receptors.

(e) *Cholinoreceptors* The two principal subtypes are muscarinic and nicotinic cholinoreceptors (the term acetylcholine receptors is acceptable).

Muscarinic cholinoreceptors Until further evidence is forthcoming, the nomenclature should be confined to only three subtypes, namely M₁, M₂ and M₃ cholinoreceptors, where M₂ refers to the cardiac subtype and M₃ includes both smooth muscle and glandular subtypes. When the term is used repetitively, muscarinic receptor would be acceptable.

Note that the style m1, m2, etc. refers to nomenclature for molecular structure based on cDNA/genomic cloning.

The abbreviation mAChR and variants are not acceptable.

Nicotinic cholinoreceptors The principal subtypes currently accepted are muscle-type and neuronal-type receptors. The abbreviation nAChR and variants are not acceptable.

(f) *Dopamine receptors* Only D₁ and D₂ dopamine receptors are currently recognised. For the present, the possible D₃ subtype must be very clearly defined and fully referenced. There is no need to use DA₁ and DA₂ for peripheral dopamine receptors.

(g) *Excitatory amino acid receptors* At present, no subdivisions of the receptor for N-methyl-D-aspartate (NMDA; see 5 (c) below) are permitted except as discussion points.

Three non-NMDA receptors have been established and are named: (i) Quisqualate- and AMPA-preferring non-NMDA receptors that control cationic channels, to be abbreviated AMPA receptors. (ii) Kainate-preferring non-NMDA receptors, to be abbreviated Kai receptors. (iii) 2-Amino-4-phosphobutyrate receptors (also sometimes known as ABP or AP₄ receptors) to be abbreviated L-AP₄ receptors.

Acceptance of the occurrence of another receptor, described as regulating phosphatidyl inositol pathways, is considered to be premature. The term 'metabotropic receptor' is therefore to be used only as a discussion point.

Otherwise, where appropriate, the term glutamate receptors should be used.

(h) *γ -Aminobutyric acid (GABA) receptors* The principal subtypes are GABA_A and GABA_B receptors. Any other is to be used only as discussion point.

(i) *Histamine receptors* At present, the only histamine receptor subtypes that are acceptable without a need for very clear definition and full referencing are H₁-, H₂ and H₃- although in the latter case, a definition and references are desirable.

(j) *Receptors for 5-hydroxytryptamine* The name 5-hydroxytryptamine (5-HT) is preferred to serotonin (see 4 (b) below). The principal subtypes recognised are 5-HT_{1A,1B,1C,1D}, 5-HT₁-like, 5-HT₂ and 5-HT₃. All three should be defined and referenced.

Further putative subtypes may be debated in the Discussion section but, until there is international agreement on the nomenclature, names, such as 5-HT_{1E}, 5-HT₄, are not acceptable, except as discussion points.

(k) *Leukotriene receptors* When first mentioned, the style leukotriene (LT) receptor should be used, thereafter LT receptor. Receptors should be designated according to the leukotriene that selectively or preferentially binds to them.

Editors should be aware that the interpretation of [³H]-LTC₄-binding is hampered by the presence of a binding site for LTC₄ on glutathione S-transferase.

(l) *Neuropeptide Y receptors* Despite some attempts to create subtypes, the view of experts was that no subtypes should be recognised except as discussion points. Full explanations of the basis for proposed subtypes would be required.

(m) *Opioid receptors* The principal subtypes are μ -, δ - and κ -opioid receptors. Other possible subtypes (e.g. ϵ) are acceptable only as discussion points.

(n) *Oxytocin receptors* (see Vasopressin and oxytocin receptors).

(o) *Prostanoid receptors* The principal types are DP, EP, FP, IP and TP receptors. These should be introduced as prostanoid XP receptors, thereafter simply as XP receptors (where X denotes the type). If subtypes exist, they would be referred to as XP_n, (e.g. EP₁, EP₂, EP₃) receptors.

In the event of possible confusion between a subtype of receptors for prostacyclin IP₃ and a 'receptor' for one of the phosphatidyl inositol (inositol trisphosphate; InsP₃), the term prostanoid IP₃ receptor should be used.

(p) *Purinoceptors* The main subtypes permissible are P₁ and P₂. Subdivisions of P₁ into A₁ and A₂ types and of P₂ into P_{2X} and P_{2Y} types are acceptable with appropriate supporting references, provided they are based on agonist potencies and results with antagonists but not on activation of particular Second Messenger Systems.

(q) *Tachykinin receptors* Except as discussion points, only the following tachykinin (NK) receptor subtypes are acceptable at present: NK₁, NK₂ and NK₃ and must be fully referenced.

(r) *Vasoactive intestinal peptide (VIP) receptors* Despite some attempts to create subtypes, the view of experts was that no subtypes should be recognised except as discussion points. Full explanations of the basis for proposed subtypes would be required.

(s) *Vasopressin and oxytocin receptors* The principal subtypes are to be designated V₁, V₂, V₃ and OT receptors; V₃ has sometimes been known as V_{1B} but the original term V₃ is preferred (see 2(c)).

4 Naming of nerve fibres

Many nerve fibres are now known to release more than one transmitter, and future work may show that this is in fact the general rule. In that case, the concept of the same transmitter being released either at different developmental stages or under various experimental conditions would no longer hold, and single adjectives that imply this (e.g. cholinergic, noradrenergic) would become inappropriate when applied to nerve fibres, as distinct from transmitter functions. For the present, those nerve fibres that are known to

function by releasing more than one identified transmitter may be described accordingly; for example, noradrenergic-purinergic, cholinergic-peptidergic (in alphabetical order, the order implying no priority of function).

N.B. The suffix 'ergic' should continue to be applied only to nerve fibres and to the transmission event, in accordance with Dale's intentions. For example, 'cholinergic' indicates that the nerve fibre, or the transmission, functions under particular conditions through the release of a choline-like substance. The suffix should not be used loosely to mean 'pertaining to'. Hence, for example, the expression 'cholinergic receptor' (rather than cholinceptor) is an inappropriate use of the term.

(a) *Catecholamine releasing nerve fibres* The adjective to be applied to nerve fibres that release dopamine as a transmitter is dopaminergic (not DAergic, even in a title).

Nerve fibres that are known to function by releasing noradrenaline are to be described as noradrenergic. The term adrenergic should be reserved for either a nerve fibre that functions by releasing a catecholamine, the identity of which is unknown, or one known to release adrenaline.

(b) *Some other adjectives describing nerve fibre function* NANC is an acceptable abbreviation of non-adrenergic, non-cholinergic for peripheral efferent nerve fibres when the identity of the transmitter(s) is unknown other than the fact that neither (nor)adrenaline nor acetylcholine is involved. It should be defined when introduced. NANCergic, e-NANC (or NANC-e) and i-NANC (or NANC-i) are not acceptable terms.

Glutamatergic, not glutaminergic, should be used to describe nerve fibres releasing glutamate. In referring to peptide-releasing nerve fibres, (e.g. those that may release substance P or vasoactive intestinal peptide), the nomenclature to be used is peptidergic (X), e.g. peptidergic (SP), peptidergic (VIP), not SPergic, VIPergic.

The terms 5-hydroxytryptamine (5-HT) and 5-hydroxytryptaminergic (i.e. nerves releasing 5-hydroxytryptamine) are preferred to those of serotonin and serotoninergic. The term 5-HTergic is not acceptable, except to avoid frequent repetition of 5-hydroxytryptaminergic.

Likewise, the terms purinergic (ATP) and purinergic (adenosine) are preferred.

5 Other nomenclature requirements

(a) *Racemates* Authors must state unambiguously in the Methods section of papers which isomers were used, e.g. (+)- or (-)-propranolol, and must bring to the attention of the reader the composite character of drugs that are mixtures of stereo-isomers. Furthermore, the implications of the composite nature of such drugs studied for the interpretation of the data measured and the conclusions drawn must be made explicit. Note that the terms d- or l- for dextro- and laevo-rotatory are now obsolete, and the prefixes (+)- or (-)- respectively should be used. Capital D and L refer to the absolute configurations and of course remain acceptable when appropriate.

(b) *Platelet activating factor (acetyl-glyceryl-ether-phosphorylcholine)* The acronym to be used is PAF (not AGEPC, Paf, Paf-acether or other variant).

(c) *Ligands for NMDA receptors* N-methyl-D-aspartate (NMDA) and N-methyl-DL-aspartate (NMDLA) are to be given in full when introduced in the text.

(d) *Purines* This term should not be used as a synonym for purine nucleotides or nucleosides.

INDEX TO VOLUMES 99, 100 AND 101

AUTHOR INDEX

A

AAS, P. & MACLAGAN, J. Evidence for prejunctional M₂ muscarinic receptors in pulmonary cholinergic nerves in the rat, 101, 73
 ABE, S., KANAIDE, H. & NAKAMURA, M. Front-surface fluorometry with fura-2 and effects of nitroglycerin on cytosolic calcium concentrations and on tension in the coronary artery of the pig, 101, 545
 ABE, S. *see* HIRANO, K., 101, 273
 ABEBE, W. & MACLEOD, K.M. Protein kinase C-mediated contractile responses of arteries from diabetic rats, 101, 465
 ABRAHAMSSON, T. *see* WAHLUND, G., 99, 592
 ACHIKE, F.I. & DAI, S. Cardiovascular responses to verapamil and nifedipine in hypoventilated and hyperventilated rats, 100, 102
 ADAM, A. *see* DAMAS, J., 101, 418
 ADEAGBO, A.S.O. & MALIK, K.U. Endothelium-dependent and BRL 34915-induced vasodilatation in rat isolated perfused mesenteric arteries: role of G-proteins, K⁺ and calcium channels, 100, 427
 ADGEY, A.A.J. *see* CARLISLE, E.J.F., 100, 530
 ADVENIER, C., SARRIA, B., NALINE, E., PUYBASSET, L. & LAGENTE, V. Contractile activity of three endothelins (ET-1, ET-2 and ET-3) on the human isolated bronchus, 100, 168
 AGBANYO, M. *see* NAVARATHNAM, S., 101, 370
 AIKAWA, T., SEKIZAWA, K., ITABASHI, S., SASAKI, H. & TAKISHIMA, T. Inhibitory actions of prostaglandin E₁ on non-adrenergic non-cholinergic contraction in guinea-pig bronchi, 101, 13
 AIZENMAN, E. *see* REYNOLDS, I.J., 101, 178
 AKAIKE, N. *see* TAKAHASHI, K., 100, 705
 AKASU, T. *see* TOKIMASA, T., 101, 190
 AKSOY, M.O., HARAKAL, C., SMITH, J.B., STEWART, G.J. & ZERWICK, C.R. Mediation of bradykinin-induced contraction in canine veins via thromboxane/prostaglandin endoperoxide receptor activation, 99, 461
 ALARANTA, S., KLINGE, E., PÄTSI, T. & SJÖSTRAND, N.O. Inhibition of nicotine-induced relaxation of the bovine retractor penis muscle by compounds known to have ganglion-blocking properties, 101, 472
 ALBRIGHTSON-WINSLOW, C.R. *see* BROOKS, D.P., 99, 750
 ALDASORO, M. *see* de AGUILERA, E.M., 99, 439
 ALEXANDER, B. *see* MATHIE, R.T., 100, 626
 ALFARO, M.J., COLADO, M.I., LÓPEZ, F. & MARTIN, M.I. Effect of clonidine, nifedipine and diltiazem on the *in vitro* opioid withdrawal response in the guinea-pig ileum, 101, 958
 ALLEY, M.C. & ALPS, B.J. Prevention of myocardial enzyme release by ranolazine in a primate model of ischaemia with reperfusion, 99, 5
 ALLEN, J.D. *see* CARLISLE, E.J.F., 100, 530
 ALLEN, T.G.J. & BURNSTOCK, G. GABA_A receptor-mediated increase in membrane chloride conductance in rat paratracheal neurones, 100, 261
 —, The actions of adenosine 5'-triphosphate on guinea-pig intracardiac neurones in culture, 100, 269
 ALLGEIER, H. *see* FAGG, G.E., 99, 791
 ALPS, B.J. *see* ALLEY, M.C., 99, 5
 AL-SWAYEH, O.A. *see* MOORE, P.K., 99, 408
 —, *see* MOORE, P.K., 101, 865
 ALVING, K. *see* MATRAN, R., 100, 535
 AMERINI, S. *see* MANTELLI, L., 99, 717
 ANDERSON, A.J. *see* PATMORE, L., 99, 687
 ANDERSSON, R.G.G. *see* GRUNDEMAR, L., 99, 473
 ANDINÉ, P., RUDOLPHI, K.A., FREDHOLM, B.B. & HAGBERG, H. Effect of propentofylline (HWA 285) on extracellular purines and excitatory amino acids in CA1 of rat hippocampus during transient ischaemia, 100, 814
 ANDRIANTSITOHAINA, R. & STOCLET, J.C. Enhancement by neuropeptide Y (NPY) of the dihydropyridine-sensitive component of the response to α_1 -adrenoceptor stimulation in rat isolated mesenteric arterioles, 99, 389
 ANGST, C. *see* FAGG, G.E., 99, 791
 ANGUS, J.A. *see* COCKS, T.M., 100, 375
 —, *see* MCPHERSON, G.A., 100, 201
 —, *see* PRUNEAU, D., 100, 180

ANIS, N.A. *see* JONES, M.G., 101, 968ANTHONY, B.L. *see* CATRAVAS, J.D., 101, 121

ANTUNES, E., MARIANO, M., CIRINO, G., LEVI, S. & DE NUCCI, G. Pharmacological characterization of polycation-induced rat hind-paw oedema, 101, 986

ANWYL, R. *see* O'CONNOR, J.J., 101, 171AOKI, S. *see* SANJAR, S., 99, 267—, *see* SANJAR, S., 99, 679

APPLEYARD, M.E., TAYLOR, S.C. & LITTLE, H.J. Acetylcholinesterase activity in regions of mouse brain following acute and chronic treatment with a benzodiazepine inverse agonist, 101, 599

ARMSTRONG, P.W. *see* FORSTER, C., 101, 109ASANO, M. *see* MASUZAWA, K., 100, 143ASHFORD, M.L.J., BODEN, P.R. & TREHERNE, J.M. Tolbutamide excites rat glucoreceptive ventromedial hypothalamic neurones by indirect inhibition of ATP-K⁺ channels, 101, 531ASPINALL, R.J. *see* DUNNE, M.J., 99, 169ASHTON, N., BALMENT, R.J. & BLACKBURN, T.P. κ -Opioid receptor agonists modulate the renal excretion of water and electrolytes in anaesthetised rats, 99, 181

B

BABA, A. *see* ETOH, S., 100, 564BACKUS, L.I., SHARP, T. & GRAHAME-SMITH, D.G. Behavioural evidence for a functional interaction between central 5-HT₂ and 5-HT_{1A} receptors, 100, 793BAEBLICH, S.E. *see* SCHMIDT, H.H.H.W., 101, 145

BAGETTA, G., DE SARRO, G.B., SAKURADA, S., RISPOLI, V. & NISTICO, G. Different profile of electrocortical power spectrum changes after micro-infusion into the locus coeruleus of selective agonists at various opioid receptor subtypes in rats, 101, 655

BAGETTA, G., NISTICO, G. & BOWERY, N.G. Prevention by the NMDA receptor antagonist, MK801 of neuronal loss produced by tetanus toxin in the rat hippocampus, 101, 776

BAILEY, S.J. & HOURANI, S.M.O. A study of the purinoceptors mediating contraction in the rat colon, 100, 753

BAIN, P. *see* PALMER, R.M., 101, 835

BAIRD, A.A. & MUIR, T.C. Membrane hyperpolarization, cyclic nucleotide levels and relaxation in the guinea-pig internal anal sphincter, 100, 329

BAKER, R. *see* FREEDMAN, S.B., 101, 575—, *see* SPICER, B.A., 101, 821BAKHLE, Y.S. *see* YEATS, D.A., 100, 447BALDWIN, B.A. *see* EBENEZER, I.S., 101, 559BALLATI, L. *see* MANZINI, S., 100, 251BALLERINI, L. *see* PUGLIESE, A.M., 99, 189BALLESTA, J.J., GARCIA, A.G., GUTIERREZ, L.M., HIDALGO, M.J., PALMERO, M., REIG, J.A. & VINIEGRA, S. Separate [³H]-nitrendipine binding sites of mitochondria and plasma membranes of bovine adrenal medulla, 101, 21BALMENT, R.J. *see* ASHTON, N., 99, 181BAMFORTH, J.P. *see* KELLY, S.S., 99, 721BANKS, B.E.C., DEMPSEY, C.E., VERNON, C.A., WARNER, J.A. & YAMEY, J. Anti-inflammatory activity of bee venom peptide 401 (mast cell degranulating peptide) and compound 48/80 results from mast cell degranulation *in vivo*, 99, 350BARABÉ, J. *see* CADIEUX, A., 101, 193BARAJAS-LOPEZ, C. *see* SHEN, K.-Z., 101, 925BARTBANTI, G. *see* MAGGI, C.A., 99, 186BARBER, D.J. *see* COOPER, S.J., 99, 65BARBER, H.E. *see* BOATENG, Y.A., 101, 301

BARLOW, R.B., HOLDUP, D.W., HARRIS, G., VEALE, M.A. & WILLIAMS, A. Effects of chain-length and unsaturation on affinity and selectivity at muscarinic receptors, 99, 622

BARNES, P.J. *see* BELVISI, M.G., 100, 131—, *see* CHILVERS, E.R., 99, 297—, *see* CRAWLEY, D.E., 101, 166—, *see* ICHINOSE, M., 101, 77—, *see* LÖTVALL, J.O., 100, 69—, *see* ROGERS, D.F., 101, 739BARNES, S. *see* MARSHALL, F.H., 99, 845

BARNETT, D.B. *see* KOWALSKI, M.T., 99, 27
 BARTOLINI, A. *see* GHELARDINI, C., 101, 49
 BARTRUP, J.T. & STONE, T.W. Dihydropyridines alter adenosine sensitivity in the rat hippocampal slice, 101, 97
 BAST, A. *see* LEURS, R., 101, 881
 BAUD, J. *see* FAGG, G.E., 99, 791
 BAUMANN, P. *see* FAGG, G.E., 99, 791
 BAYDOUN, A.R., MARKHAM, A., MORGAN, R.M. & SWEETMAN, A.J. Bay K 8644, modifier of calcium transport and energy metabolism in rat heart mitochondria: a new intracellular site of action, 101, 15
 BEANI, L. *see* BIANCHI, C., 101, 448
 BEAVER, T.H. *see* DOHERTY, N.S., 101, 869
 BEECH, D.J., MACKENZIE, I., BOLTON, T.B. & CHRISTEN, M.O. Effects of pinaverium on voltage-activated calcium channel currents of single smooth muscle cells isolated from the longitudinal muscle of the rabbit jejunum, 99, 374
 BEETENS, J. *see* DE CLERCK, F., 99, 631
 BEFUS, A.D. *see* MATHISON, R., 101, 93
 BELCOURT, A. *see* FELDMAN, J., 100, 600
 BELL, C. *see* SUNN, N., 99, 655
 BELVISI, M.G., STRETTON, C.D. & BARNES, P.J. Modulation of cholinergic neurotransmission in guinea-pig airways by opioids, 100, 131
 BENNETT, A. *see* D'AMATO, M., 100, 126
 —, *see* GOEL, R.K., 99, 289
 BENNETT, T. *see* GARDINER, S.M., 99, 107
 —, *see* GARDINER, S.M., 99, 830
 —, *see* GARDINER, S.M., 100, 158
 —, *see* GARDINER, S.M., 101, 10
 —, *see* GARDINER, S.M., 101, 625
 —, *see* GARDINER, S.M., 101, 632
 BERENDSEN, H.H.G. & BROEKKAMP, C.L.E. Behavioural evidence for functional interactions between 5-HT-receptor subtypes in rats and mice, 101, 667
 BERLAN, M. *see* ESTAN, L., 101, 329
 —, *see* GALITZKY, J., 100, 862
 BERNARDI, G. *see* MERCURI, N.B., 100, 257
 BERNE, R.M. *see* GIDDAY, J.M., 100, 95
 BERTHELSEN, H.C. *see* KNUDSEN, T., 100, 453
 BETTANEY, J. *see* DRAY, A., 99, 323
 —, *see* DRAY, A., 101, 727
 —, *see* JAMES, I.F., 99, 503
 BIANCHETTI, A. & MANARA, L. *In vitro* inhibition of intestinal motility by phenylethanolaminotetralines: evidence of atypical β -adrenoceptors in rat colon, 100, 831
 BIANCHI, C., SINISCALCHI, A. & BEANI, L. 5-HT_{1A} agonists increase and 5-HT₃ agonists decrease acetylcholine efflux from the cerebral cortex of freely-moving guinea-pigs, 101, 448
 BIGAUD, M. *see* DAINTY, I.A., 100, 241
 BIRCH, P.J. *see* HAYES, A.G., 101, 944
 BIRD, I.M. *see* LIGHTLY, E.R.T., 99, 709
 BIRRELL, G.J., MCQUEEN, D.S., IGOO, A. & GRUBB, B.D. The effects of 5-HT on articular sensory receptors in normal and arthritic rats, 101, 715
 BISSET, G.W., CHOWDREY, H.S., FAIRHALL, K.M. & GUNN, L.K. Central inhibition by γ -aminobutyric acid and muscimol of the release of vasopressin and oxytocin by an osmotic stimulus in the rat, 99, 529
 BITTIGER, H. *see* FAGG, G.E., 99, 791
 BLACKBURN, T.P. *see* ASHTON, N., 99, 181
 BLEAKMAN, D., BRORSON, J.R. & MILLER, R.J. The effect of capsaicin on voltage-gated calcium currents and calcium signals in cultured dorsal root ganglion cells, 101, 423
 BO, X. & BURNSTOCK, G. High- and low-affinity binding sites for [³H]- α , β -methylene ATP in rat urinary bladder membranes, 101, 291
 BO, X. & BURNSTOCK, G. The effects of Bay K 8644 and nifedipine on the responses of rat urinary bladder to electrical field stimulation, β , α -methylene ATP and acetylcholine, 101, 494
 BOARDER, M.R. *see* JONES, J.A., 101, 521
 BOATENG, Y.A., BARBER, H.E., MACDONALD, T.M., PETRIE, J.C., LEE, M.R. & WHITING, P.H. The pharmacokinetics of γ -glutamyl-L-dopa in normal and anephric rats and rats with glycerol-induced acute renal failure, 101, 301
 BODDEKE, H.W.G.M. & KALKMAN, H.O. Zocapride and BRL 24924 induce an increase in EEG-energy in rats, 101, 281
 BODEN, P.R. *see* ASHFORD, M.L.J., 101, 531
 BOECKXSTAENS, G.E., PECKMANS, P.A., RAMPART, M., RUYTJENS, I.F., VERBEUREN, T.J., HERMAN, A.G. & VAN MAERCKE, Y.M. GABA_A receptor-mediated stimulation of non-adrenergic non-cholinergic neurones in the dog ileocolonic junction, 101, 460
 BOEHM, C. *see* TUMER, N., 99, 87
 BOEYNAEMS, J.-M., BOUTHERIN-FALSON, O., LAGNEAU, C. & GALAND, N. Enhancement of the endothelial production of prostacyclin by inhibitors of protein synthesis, 101, 799
 BOGLE, R.G., PIRES, J.G.P. & RAMAGE, A.G. Evidence that central 5-HT_{1A}-receptors play a role in the von Bezold-Jarisch reflex in the rat, 100, 757
 BÖHME, E. *see* SCHMIDT, H.H.W., 101, 145
 BOLTON, T.B. *see* BEECH, D.J., 99, 374
 —, *see* HUGHES, A.D., 101, 3
 BOOBIS, A.R. *see* NEWMAN, C.M., 99, 825
 BORGEAT, P. *see* MÉNARD, L., 100, 15
 BORST, S.E. & SCARPACE, P.J. Reduced high-affinity α_1 -adrenoceptors in liver of senescent rats: implications of assessment at various temperatures, 101, 650
 BOSE, D. *see* NAVARATNAM, S., 101, 370
 BOUBEKEUR, A.K. *see* SANJAR, S., 99, 267
 BOUGHTON-SMITH, N.K. *see* HUTCHESON, I.R., 101, 815
 BOULANGER, C., SCHINI, V.B., HENDRICKSON, H. & VANDHOUTTE, P.M. Chronic exposure of cultured endothelial cells to eicosapentaenoic acid potentiates the release of endothelium-derived relaxing factor(s), 99, 176
 BOULANGER, C., SCHINI, V.B., MONCADA, S. & VANDHOUTTE, P.M. Stimulation of cyclic GMP production in cultured endothelial cells of the pig by bradykinin, adenosine diphosphate, calcium ionophore A23187 and nitric oxide, 101, 152
 BOUHELAL, R., LOUBATIÈRES-MARIANI, M.-M. & MIR, A.K. Investigation of the mechanism(s) of 8-OH-DPAT-mediated inhibition of plasma insulin in spontaneously hypertensive rats, 100, 173
 BOURA, A.L.A. *see* LAU, W.A.K., 101, 394
 —, *see* RECHTMAN, M.P., 101, 269
 BOURDON, V. *see* DAMAS, J., 101, 418
 BOUSQUET, P. *see* FELDMAN, J., 100, 600
 BOUTHERIN-FALSON, O. *see* BOEYNAEMS, J.-M., 101, 799
 BOWERY, N.G. *see* BAGETTA, G., 101, 776
 BOWHAY, A.R. *see* DOLIN, S.J., 101, 691
 BOYLE, S. *see* HUNTER, J.C., 101, 183
 BRADING, A.F. & WILLIAMS, J.H. Contractile responses of smooth muscle strips from rat and guinea-pig urinary bladder to transmural stimulation: effects of atropine and α , β -methylene ATP, 99, 493
 BRADING, A.F. *SEE* FUJII, K., 99, 779
 —, *see* INOUE, R., 100, 619
 BRAIN, S.D. *see* BUCKLEY, T.L., 99, 7
 —, *see* CROSSMAN, D.C., 99, 71
 BRAMLEY, A.M., SAMHOUN, M.N. & PIPER, P.J. The role of the epithelium in modulating the responses of guinea-pig trachea induced by bradykinin *in vitro*, 99, 762
 BRAMMER, M.J. *see* XIANG, J.-Z., 101, 140
 BRAQUET, P. *see* SIROIS, M.G., 101, 896
 BRASCH, H. *see* von POEHL, C., 101, 406
 BRAVE, S.R. *see* TUCKER, J.F., 100, 661
 BRAY, K.M. *see* NEWGREEN, D.T., 100, 605
 BREIMER, D.D. *see* DINGEMANSE, J., 99, 53
 BRICCA, G. *see* FELDMAN, J., 100, 600
 BRIZZOLARA, A.L. & BURNSTOCK, G. Evidence for noradrenergic-purinergic cotransmission in the hepatic artery of the rabbit, 99, 835
 BRODKE, O.-E. *see* MOTOMURA, S., 101, 363
 BROEKKAMP, C.L.E. *see* BERENDSEN, H.H.G., 101, 667
 BROOKS, D.P., CALDWELL, N.C., KOSTER, P.F., ALBRIGHTSON-WINSLOW, C.R. & KINTER, L.B. Effect of cyclo-oxygenase blockade on the renal actions of vasopressin and SK&F 105494 in the rhesus monkey, 99, 750
 BROOKS, D.P., SOLLEVOLD, H.A. & CONTINO, L.C. Vasopressin and the pathogenesis of chronic renal failure, 100, 79
 BRORSON, J.R. *see* BLEAKMAN, D., 101, 423
 BROWN, A.M. *see* KAUMANN, A.J., 100, 879
 BROWN, B.S. *see* NEWGREEN, D.T., 100, 605
 BROWN, C.M., MACKINNON, A.C., MCGRATH, J.C., SPEDDING, M. & KILPATRICK, A.T. α_2 -Adrenoceptor subtypes and imidazoline-like binding sites in the rat brain, 99, 803
 —, Heterogeneity of α_2 -adrenoceptors in rat cortex but not human platelets can be identified by 8-OH-DPAT, RU 24969 and methysergide, 99, 481
 BROWN, L.A., HUMPHREY, S.M. & HARDING, S.E. The anti-adrenergic effect of adenosine and its blockade by pertussis toxin:

a comparative study in myocytes isolated from guinea-pig, rat and failing human hearts, **101**, 484

BROWN, M.J. *see* KAUMANN, A.J., **100**, 879

BROWN, R. *see* MOUSA, S.A., **99**, 233
—, *see* MOUSA, S.A., **100**, 379

BRUCKDORFER, K.R. *see* JACOBS, M., **100**, 21

BRUIJNZEEL, P.L.B., WARRINGA, R.A.J., KOK, P.T.M. & KREUKNIET, J. Inhibition of neutrophil and eosinophil induced chemotaxis by nedocromil sodium and sodium cromoglycate, **99**, 798

BRUNDISH, D. *see* FAGG, G.E., **99**, 791

BRUNEAU, P. *see* FOSTER, S.J., **99**, 113

BRUNELLESCHI, S., VANNI, L., LEDDA, F., GIOTTI, A., MAGGI, C.A. & FANTOZZI, R. Tachykinins activate guinea-pig alveolar macrophages: involvement of NK₂ and NK₁ receptors, **100**, 417

BUCKLEY, T.L., BRAIN, S.D. & WILLIAMS, T.J. Ruthenium red selectively inhibits oedema formation and increased blood flow induced by capsaicin in rabbit skin, **99**, 77

BULL, H.A. & DOWD, P.M. Interleukin-1 potentiates histamine-induced release of prostacyclin from human endothelial cells, **101**, 703

BULLOCH, J.M. & STARKE, K. Presynaptic α_2 -autoinhibition in a vascular neuroeffector junction where ATP and noradrenaline act as co-transmitters, **99**, 279

BUNCE, K.T. & SPRAGGS, C.F. Prostanoid stimulation of anion secretion in guinea-pig gastric and ileal mucosa is mediated by different receptors, **101**, 889

BUNCE, K.T. *see* BUTLER, A., **101**, 591

BURDET, R. *see* CRISCIONE, L., **100**, 31

BURNSTOCK, G. *see* ALLEN, T.G.L., **100**, 261
—, *see* ALLEN, T.G.L., **100**, 269
—, *see* BO, X., **101**, 291
—, *see* BO, X., **101**, 494
—, *see* BRIZZOLARA, A.L., **99**, 835
—, *see* ELLIS, J.L., **100**, 457
—, *see* HOYLE, C.H.V., **99**, 617

BURRIDGE, J. *see* BUTLER, A., **101**, 591

BURTON, G.A., MACNEIL, S., DE JONGE, A. & HAYLOR, J. Cyclic GMP release and vasodilation induced by EDRF and atrial natriuretic factor in the isolated perfused kidney of the rat, **99**, 364

BUTLER, A., ELSEWOOD, C.J., BURRIDGE, J., IRELAND, S.J., BUNCE, K.T., KILPATRICK, G.J. & TYERS, M.B. The pharmacological characterization of 5-HT₃ receptors in three isolated preparations derived from guinea-pig tissues, **101**, 591

BUTTERFIELD, M.C. & CHESS-WILLIAMS, R. Enhanced α -adrenoceptor responsiveness and receptor number during global ischaemia in the Langendorff perfused rat heart, **100**, 641

BUZZI, M.G. & MOSKOWITZ, M.A. The antimigraine drug, sumatriptan (GR43175), selectively blocks neurogenic plasma extravasation from blood vessels in dura mater, **99**, 202

C

CADIEUX, A., LANOUE, C., SIROIS, P. & BARABÉ, J. Carbachol and 5-hydroxytryptamine-induced contraction in rat isolated airways: inhibition by calcitonin gene-related peptide, **101**, 193

CALABRESI, P. *see* MERCURI, N.B., **100**, 257

CALDWELL, N.C. *see* BROOKS, D.P., **99**, 750

CAMPBELL, I.C. *see* XIANG, J.Z., **101**, 140

CAREY, F. *see* MORONEY, M.A., **101**, 128

CARLISLE, E.J.F., ALLEN, J.D., KERNOHAN, W.G., LEAHY, W. & ADGEY, A.A.J. Pharmacological analysis of established ventricular fibrillation, **100**, 530

CARR, R.D., COOPER, A.E., HUTCHINSON, R., MANN, J., O'CONNOR, S.E., ROBINSON, D.H. & WELLS, E. Preferential biliary elimination of FPL 63547, a novel inhibitor of angiotensin-converting enzyme, in the rat, **100**, 90

CARR, R.D., HIGGS, L., KILLINGBACK, P.G., NICOL, A.K., O'CONNOR, S.E., ROBSON, A., WELLS, E. & SIMPSON, W.T. Pharmacological properties of FPL 63547, a novel inhibitor of angiotensin-converting enzyme, **100**, 83

CARSWELL, H. *see* CRAWFORD, M.L.A., **100**, 867

CASTRO, E., TORRES, M., MIRAS-PORTUGAL, M.T. & GONZALEZ, M.P. Effect of diadenosine polyphosphates on catecholamine secretion from isolated chromaffin cells, **100**, 360

CATRAVAS, J.D., RYAN, J.W., CHUNG, A.Y.K., QUINN, N.E. & ANTHONY, B.L. Inhibition of endothelial-bound angiotensin converting enzyme, *in vivo*, **101**, 121

CAVERO, I. *see* FLOCH, A., **100**, 163

CREDA, E. *see* MICHELETTI, R., **100**, 150

CHAHL, L.A. Effects of putative neurotransmitters and related drugs on withdrawal contractures of guinea-pig isolated ileum following brief contact with [Met⁵]enkephalin, **101**, 908

CHALLISS, R.A.J. *see* CHILVERS, E.R., **99**, 297

CHALLISS, R.A.J. & NICHOLSON, C.D. Effects of selective phosphodiesterase inhibition on cyclic AMP hydrolysis in rat cerebral cortical slices, **99**, 47

CHAN, K.Y. *see* DOHERTY, N.S., **101**, 869

CHAN, Y. *see* MOUSA, S.A., **99**, 233

CHAND, N., DIAMANTIS, W. & SOFIA, R.D. Induction of non-specific airway hyperreactivity by potassium channel blockade in rat isolated trachea, **101**, 541

CHANDLER, C.J., ONG, B.Y. & SITAR, D.S. Haemodynamic alterations in anaesthetized and acutely intoxicated newborn piglets, **101**, 227

CHANG, C.C. *see* HONG, S.J., **101**, 793

CHAPMAN, I.D. *see* SANJAR, S., **99**, 267

CHARALAMBOUS, L. *see* TUCKER, J.F., **100**, 661

CHAU, T. *see* NAVARATNAM, S., **101**, 370

CHEN, H-I. Evidence for the presynaptic action of 5-hydroxytryptamine and the involvement of purinergic innervation in the rabbit lower urinary tract, **101**, 212

CHESS-WILLIAMS, R. *see* BUTTERFIELD, M.C., **100**, 641

CHILVERS, E.R., CHALLISS, R.A.J., WILLCOCKS, A.L., POTTER, B.V.L., BARNES, P.J. & NAHORSKI, S.R. Characterization of stereospecific binding sites for inositol 1,4,5-trisphosphate in airway smooth muscle, **99**, 297

CHITANO, P. *see* MAPP, C.E., **100**, 886

CHONG, N.W.S. *see* MOORE, P.K., **99**, 408

CHOWDREY, H.S. *see* BISSET, G.W., **99**, 529

CHRIST, D., GOEBEL, M. & SAZ, H.J. Actions of acetylcholine and GABA on spontaneous contractions of the filariid, *Dipetalonema vitea*, **101**, 971

CHRIST, G.J., MAAVANI, S., VALCIC, M. & MELMAN, A. Pharmacological studies of human erectile tissue: characteristics of spontaneous contractions and alterations in α -adrenoceptor responsiveness with age and disease in isolated tissues, **101**, 375

CHRISTEN, M.O. *see* BEECH, D.J., **99**, 374

CHRISTOPHE, J. *see* FEIFEL, R., **99**, 445

CHUNG, A.Y.K. *see* CATRAVAS, J.D., **101**, 121

CHUNG, K.F. *see* LÖTVALL, J.O., **100**, 69

CIRINO, G. *see* ANTUNES, E., **101**, 986

CLARKE, B. *see* PATMORE, G., **99**, 687

CLARKE, P.B.S., WYDER, K.J., JAKUBOVIC, A. & FIBIGER, H.C. Effects of B-HT 920 on nigrostriatal and mesolimbic dopamine systems in normosensitive and supersensitive rats, **99**, 509

CLELLAND, C. *see* DINH XUAN, A.T., **99**, 9

COCKS, T.M., KING, S.J. & ANGUS, J.A. Glibenclamide is a competitive antagonist of the thromboxane A₂ receptor in dog coronary artery *in vitro*, **100**, 375

COLADO, M.I. *see* ALFARO, M.J., **101**, 958

COLLARD, K.J. *see* WILKINSON, L.S., **101**, 981

COLLINS, P.D. *see* WILLIAMS, F.M., **100**, 729

COMELLA, J.X. *see* MOLGÓ, J., **99**, 695

COMMISSIONG, J.W., SLIMOVITCH, C. & TOFFANO, G. Regulation of the synthesis and metabolism of striatal dopamine after disruption of nerve conduction in the medial forebrain bundle, **99**, 741

COMPTON, A.M. *see* GARDINER, S.M., **99**, 107
—, *see* GARDINER, S.M., **99**, 830
—, *see* GARDINER, S.M., **100**, 158
—, *see* GARDINER, S.M., **101**, 10
—, *see* GARDINER, S.M., **101**, 625
—, *see* GARDINER, S.M., **101**, 632

CONNAUGHTON, S. & DOCHERTY, J.R. Functional evidence for heterogeneity of peripheral prejunctional α_2 -adrenoceptors, **101**, 285

CONNAUGHTON, S. & DOCHERTY, J.R. No evidence for differences between pre- and post-junction α_2 -adrenoceptors in the periphery, **99**, 97

CONSTANTI, A. *see* SMART, T.G., **99**, 643

CONTINO, L.C. *see* BROOKS, D.P., **100**, 79

COOPER, A.E. *see* CARR, R.D., **100**, 90

COOPER, S.J., DOURISH, C.T. & BARBER, D.J. Reversal of the anorectic effect of (+)-fenfluramine in the rat by the selective cholecystokinin receptor antagonist MK-329, **99**, 65

COOTE, J.H. *see* LEWIS, D.I., **99**, 667

COPPES, R.P. *see* REMIE, R., **99**, 223

CORDEIRO, R.S.B. *see* HENRIQUES, M.G.M.O., **99**, 164

CORRADETTI, R. *see* PUGLIESE, A.M., 99, 189
 CORTIJO, J. *see* IRIARTE, C.F., 101, 257
 COTTNEY, J.E. *see* SHAHID, M., 100, 735
 COULTER, D.A., HUGUENARD, J.R. & PRINCE, D.A. Differential effects of petit mal anticonvulsants and convulsants on thalamic neurones: calcium current reduction, 100, 800
 COULTER, D.A., HUGUENARD, J.R. & PRINCE, D.A. Differential effects of petit mal anticonvulsants and convulsants on thalamic neurones: GABA current blockade, 100, 807
 COWLRICK, I.S. *see* PACIOREK, P.M., 100, 289
 COX, H.M. & CUTHBERT, A.W. The effects of neuropeptide Y and its fragments upon basal and electrically stimulated ion secretion in rat jejunum mucosa, 101, 247
 COYLE, A.J., SPINA, D. & PAGE, C.P. PAF-induced bronchial hyperresponsiveness in the rabbit: contribution of platelets and airway smooth muscle, 101, 31
 CRAGOE, JR., E.J. *see* OTANI, H., 100, 207
 CRAWFORD, M.L.A., CARSWELL, H. & YOUNG, J.M. γ -Aminobutyric acid inhibition of histamine-induced inositol phosphate formation in guinea-pig cerebellum; comparison with guinea-pig and rat cerebral cortex, 100, 867
 CRAWLEY, D.E., LIU, S.F., EVANS, T.W. & BARNES, P.J. Inhibitory role of endothelium-derived relaxing factor in rat and human pulmonary arteries, 101, 166
 CREMONA, G. *see* DINH XUAN, A.T., 99, 9
 CRESSIER, F. *see* EGLÉME, C., 100, 237
 CREUTZELDT, W. *see* KATSOULIS, S., 101, 297
 CRIDDLE, D.N., DEWAR, G.H., WATHEY, W.B. & WOODWARD, B. The effects of novel vasodilator long chain acyl carnitine esters in the isolated perfused heart of the rat, 99, 477
 CRISCIONE, L., NELLIS, P., RINIKER, B., THOMANN, H. & BURDET, R. Reactivity and sensitivity of mesenteric vascular beds and aortic rings of spontaneously hypertensive rats to endothelin: effects of calcium entry blockers, 100, 31
 CRISCUOLI, M. *see* SUBISSI, A., 100, 502
 CROSET, M. *see* FONLUPT, P., 101, 920
 CROSS, A.J. *see* GREEN, A.R., 99, 41
 CROSSMAN, D.C., DASHWOOD, M.R., BRAIN, S.D., McEWAN, J. & PEARSON, J.D. Action of calcitonin gene-related peptide upon bovine vascular endothelial and smooth muscle cells grown in isolation and co-culture, 99, 71
 CROXTON, R. *see* WITHERINGTON, P.G., 99, 810
 CRUWYS, S.C., DAVIES, D.E. & PETTIPHER, E.R. Co-operation between interleukin-1 and the fibrinolytic system in the degradation of collagen by articular chondrocytes, 100, 631
 CUBELA, R. *see* FABRIS, B., 100, 651
 CUTHBERT, A.W. *see* COX, H.M., 101, 247

D

DACQUET, C. *see* MIRONNEAU, J., 101, 6
 DAI, S. *see* LEUNG, C.M.K., 99, 247
 DAINTY, I.A., BIGAUD, M., McGRATH, J.C. & SPEDDING, M. Interactions of palmitoyl carnitine with the endothelium in rat aorta, 100, 241
 DAINTY, I.A., McGRATH, J.C. & TEMPLETON, A.G.B. The influence of the initial stretch and the agonist-induced tone on the effect of basal and stimulated release of EDRF, 100, 767
 DAINTY, I.A. *see* LEFF, P., 101, 55
 DALE, M.M. *see* TWOMEY, B., 100, 819
 DALY, C.J., DUNN, W.R., McGRATH, J.C., MILLER, D.J. & WILSON, V.G. An examination of the sources of calcium for contractions mediated by postjunctional α_1 - and α_2 -adrenoceptors in several blood vessels isolated from the rabbit, 99, 253
 DALZIEL, H.H., GRAY, G.A., DRUMMOND, R.M., FURMAN, B.L. & SNEDDON, P. Investigation of the selectivity of α , β -methylene ATP in inhibiting vascular responses of the rat *in vivo* and *in vitro*, 99, 820
 DAMAS, J., BOURDON, V., REMACLE-VOLON, G. & ADAM, A. Kinins and peritoneal exudates induced by carrageenin and zymosan in rats, 101, 418
 D'AMATO, M., STAMFORD, I.F. & BENNETT, A. The effects of cholecystokinin octapeptide on human isolated alimentary muscle, 100, 126
 DANHOF, M. *see* DINGEMANSE, J., 99, 53
 DASHWOOD, M.R. *see* CROSSMAN, D.C., 99, 71
 DAVIDSON, J., MILTON, A.S. & ROTONDO, D. A study of the pyrogenic actions of interleukin-1 α and interleukin 1 β : interactions with a steroidal and a non-steroidal anti-inflammatory agent, 100, 542
 DAVIES, D.E. *see* CRUWYS, S.C., 100, 631
 DAVIES, D.S. *see* NEWMAN, C.M., 99, 825
 DAVIES, E.M. *see* GREEN, A.R., 99, 41
 DAVIES, J.A. *see* DICKIE, B.G.M., 101, 8
 DAVIES, M. *see* FLETCHER, P.J., 99, 519
 DAVISON, J.S. *see* MATHISON, R., 101, 93
 DE AGUILERA, E.M., IRURZUN, A., VILA, J.M., ALDASORO, M., GALEOTE, M.S. & LLUCH, S. Role of endothelium and calcium channels in endothelin-induced contraction of human cerebral arteries, 99, 439
 DE CLERK, F., LOOTS, W., SOMERS, Y., BEETENS, J., WOUTERS, L., WYNANTS, J. & JANSSEN, P.A.J. 5-Hydroxytryptamine and arachidonic acid metabolites modulate extensive platelet activation induced by collagen in cats *in vivo*, 99, 631
 DEIGHTON, N.M. *see* MOTOMURA, S., 101, 363
 DE JONG, W. *see* VAN GIERSBERGEN, P.L.M., 99, 467
 DE JONGE, A. *see* BURTON, G.A., 99, 364
 DELDAY, M.I. *see* PALMER, R.M., 101, 835
 DEL MONTE, M., OMINI, C. & SUBISSI, A. Mechanism of the potentiation of neurally-induced bronchoconstriction by gallamine in the guinea-pig, 99, 582
 DELPÓN, E. *see* DIEZ, J., 100, 305
 DE LUCA, A., LI, C.G., RAND, M.J., REID, J.J., THAINA, P. & WONG-DUSTING, H.K. Effects of ω -conotoxin GVIA on autonomic neuroeffector transmission in various tissues, 101, 437
 DE MEY, J.G.R. *see* HEESEN, B-J., 101, 859
 DEMPSEY, C.E. *see* BANKS, B.E.C., 99, 350
 DEN BOER, M.O. *see* VILLALÓN, C.M., 100, 665
 DE NUCCI, G. *see* ANTUNES, E., 101, 986
 DE SARRO, G.B. *see* BAGETTA, G., 101, 655
 DESQUAND, S., LEFORT, J., DUMAREY, C. & VARGAFTIG, B.B. The booster injection of antigen during active sensitization of guinea-pig modifies the anti-anaphylactic activity of the PAF antagonist, WEB 2086, 100, 217
 DESOUZA, R.J. *see* GREEN, A.R., 99, 41
 DEWAR, G.H. *see* CRIDDLE, D.N., 99, 477
 DHUME, V.G. *see* WITHERINGTON, P.G., 99, 810
 DIA, S. *see* ACHIKE, F.I., 100, 102
 DIAMANTIS, W. *see* CHAND, N., 101, 541
 DICKIE, B.G.M., LEWIS, M.J. & DAVIES, J.A. Potassium-stimulated release of nitric oxide from cerebellar slices, 101, 8
 DICKINSON, S.L. *see* McDERMOTT, A.M., 101, 615
 DIEKEMA, K.A. *see* DOHERTY, N.S., 101, 869
 DIEKMANN, H.W. *see* SASSEN, L.M.A., 101, 605
 DIEZ, J., DELPÓN, E. & TAMARGO, J. Effects of platelet activating factor on contractile force and ^{45}Ca fluxes in guinea-pig isolated atria, 100, 305
 DIJK, S. *see* ROGERS, D.F., 101, 739
 DINERSTEIN, R.J. *see* DOHERTY, N.S., 101, 869
 DINGEMANSE, J., VOSKUYL, R.A., LANGEMEIJER, M.W.E., POSTEL-WESTRA, I., BREIMER, D.D., MEINARDI, H. & DANHOF, M. Pharmacokinetic-pharmacodynamic modelling of the anticonvulsant effect on oxazepam in individual rats, 99, 53
 DINGWALL, J.G. *see* FAGG, G.E., 99, 791
 DINH XUAN, A.T., HIGENBOTTAM, T.W., CLELLAND, C., PEPKE-ZABA, J., CREMONA, G. & WALLWORK, J. Impairment of pulmonary endothelium-dependent relaxation in patients with Eisenmenger's syndrome, 99, 9
 DION, S. *see* MAGGI, C.A., 100, 588
 — *see* RHALEB, N-E., 99, 445
 DIXON, D.M. & TRAYNOR, J.R. Evidence that the agonist action of dynorphin A(1-8) in the guinea-pig myenteric-plexus may be mediated partly through conversion to [Leu⁵]enkephalin, 101, 674
 DIXON, J.S. *see* SMALL, R.C., 100, 516
 DOCHERTY, J.R. No effect of pertussis toxin on peripheral prejunctional α_2 -adrenoceptor-mediated responses and on endothelium-dependent relaxations in the rat, 100, 348
 — *see* CONNAUGHTON, S., 99, 97
 — *see* CONNAUGHTON, S., 101, 285
 DODSON, B.A., URH, R.R. & MILLER, K.W. Relative potencies for barbiturate binding to the *Torpedo* acetylcholine receptor, 101, 710
 DOETSCH, N. *see* MOTOMURA, S., 101, 363
 DOHERTY, N.S., BEAVER, T.H., CHAN, K.Y., DINERSTEIN, R.J. & DIEKEMA, K.A. The antinociceptive activity of paracetamol in zymosan-induced peritonitis in mice: the role of prostacyclin and reactive oxygen species, 101, 869
 DOHI, Y. & LÜSCHER, T.F. Aging differentially affects direct and indirect actions of endothelin-1 in perfused mesenteric arteries of the rat, 100, 889

DOLARA, P. *see* ZICHE, M., 100, 11

DOLIN, S.J., PATCH, T.L., RABBANI, M., SIAREY, R.J., BOWHAY, A.R. & LITTLE, H.J. Nitrendipine decreases benzodiazepine withdrawal seizures but not the development of benzodiazepine tolerance or withdrawal signs, 101, 691

DOLPHIN, A.C. *see* SCOTT, R.H., 99, 629

DONALDSON, J. *see* HALL, I.P., 100, 646

DONETTI, A. *see* MICHELETTI, R., 100, 150

—, *see* MICHELETTI, R., 100, 395

DONTENWILL, M. *see* FELDMAN, J., 100, 600

DORSZEWSKI, A., BECKMANN-MÜLLER, B., KLING, L. & SPONER, G. Haemodynamic profile of an inhibitor of phosphodiesterase III, adibendan (BM 14.478): comparison with nitroprusside and dobutamine in conscious dogs, 101, 686

DOUGALL, I.G. *see* LEFF, P., 101, 55

DOUGLAS, S.A. & HILEY, C.R. Endothelium-dependent vascular activities of endothelin-like peptides in the isolated superior mesenteric arterial bed of the rat, 101, 81

DOURISH, C.T. *see* COOPER, S.J., 99, 65

DOUSSAU, M-P. *see* RICHER, C., 100, 557

DOWD, P.M. *see* BULL, H.A., 101, 703

DOWNING, S.J. *see* PIPER, I., 101, 901

DOXEY, J-C. *see* JOHN, G.W., 100, 699

DRAPEAU, G. *see* RHALEB, N-E., 99, 445

DRAY, A., BETTANEY, J. & FORSTER, P. Actions of capsaicin on peripheral nociceptors of the neonatal rat spinal cord *in vitro*: dependence of extracellular ions and independence of second messengers, 101, 727

DRAY, A., BETTANEY, J. & FORSTER, P. Resiniferatoxin, a potent capsaicin-like stimulator of peripheral nociceptors in the neonatal rat tail *in vitro*, 99, 323

DRAY, A. *see* JAMES, I.F., 99, 503

DRIEMAN, J.C., THIJSSEN, H.H.W., ZEEGERS, H.H.M., SMITS, J.F.M. & STRUYKER BOUDIER, H.A.J. Renal selective N-acetyl- γ -glutamyl prodrugs: a study on the mechanism of activation of the renal vasodilator prodrug CGP22979, 99, 15

DRUMMOND, R.M. *see* DALZIEL, H.H., 99, 820

DUMAREY, C. *see* DESQUAND, S., 100, 217

DUN, N.J. *see* WANG, M.Y., 99, 413

DUNCAN, G.P. *see* PATMORE, L., 99, 687

DUNCKER, D.J. *see* VAN DER GIJSEN, W.J., 100, 277

DUNCKER, D.J.G.M. *see* SASSEN, L.M.A., 101, 605

DUNN, P.M. & RANG, H.P. Bradykinin-induced depolarization of primary afferent nerve terminals in the neonatal rat spinal cord *in vitro*, 100, 656

DUNN, W.R. *see* DALY, C.J., 99, 253

DUNNE, M.J., ASPINALL, R.J. & PETERSEN, O.H. The effects of cromakalim on ATP-sensitive potassium channels in insulin-secreting cells, 99, 169

DUNNE, M.J. Effects of pinacidil, RP 49356 and nicorandil on ATP-sensitive potassium channels in insulin-secreting cells, 99, 487

DUTY, S. *see* NEWGREEN, D.T., 100, 605

E

EBENEZER, I.S. & BALDWIN, B.A. Effect of intracerebroventricular administration of the GABA_B-receptor agonist baclofen on operant feeding in satiated pigs, 101, 559

EBNER, F. Factors influencing the onset of ouabain inhibition of Na_K-ATPase from guinea-pig myocardium, 101, 337

ECKHARDT, M. *see* LEMBECK, F., 100, 49

ECKARDT, R.D. *see* SMITH III, E.F., 100, 195

EDVINSSON, L., JANSEN, I., KINGMAN, T.A. & MCCULLOCH, J. Cerebrovascular responses to capsaicin *in vitro* and *in situ*, 100, 312

EDWARDS, D.H. *see* RANDALL, M.D., 101, 781

EDWARDS, G. *see* NEWGREEN, D.T., 100, 605

EGAN, J.W. *see* SMITH III, E.F., 100, 195

EGLÈME, C., CRESSIER, F. & WOOD, J.M. Local formation of angiotensin II in the rat aorta: effect of endothelium, 100, 237

EGLEN, R.M., MICHEL, A.D., MONTGOMERY, W.W., KUNYSZ, E.A., MACHADO, C.A. & WHITING, R.L. The interaction of *para*fluorohexahydrosiladiphenidol at muscarinic receptors *in vitro*, 99, 637

EGLEN, R.M., SWANK, S.R., WALSH, L.K.M. & WHITING, R.L. Characterization of 5-HT₃ and 'atypical' 5-HT receptors mediating guinea-pig ileal contractions *in vitro*, 101, 513

EKSTRÖM, J. *see* MÅNSSON, B., 101, 853

EKWURU, M. *see* HITCHCOTT, P.K., 99, 11

EL-BEHEIRY, H. & PUIL, E. Effects of hypomagnesia on transmitter actions in neocortical slices, 101, 1006

EL-BEHEIRY, H. *see* PUIL, E., 101, 61

ELLIS, J.L. & BURNSTOCK, G. Neuropeptide Y neuromodulation of sympathetic co-transmission in the guinea-pig vas deferens, 100, 457

ELLIS, J.L. & UNDEM, B.J. Non-adrenergic, non-cholinergic contractions in the electrically field stimulated guinea-pig trachea, 101, 875

EL-MAS, M. & HUGHES, I.E. Effect of blockade of noradrenaline re-uptake on evoked tritium overflow from mouse vasa deferentia and rat cortex slices, 101, 762

ELSWECK, C.J. *see* BUTLER, A., 101, 591

ELY, S.W. *see* GIDDAY, J.M., 100, 95

ELZINGA, C.R.S. *see* ROFFEL, A.F., 99, 293

ENDOU, M. *see* TOHSE, N., 99, 437

ENGLAND, P.J. *see* MURRAY, K.J., 99, 612

—, *see* SMITH, S.J., 100, 779

ESPLUGUES, J. *see* ESPLUGUES, J.V., 100, 491

ESPLUGUES, J.V., RAMOS, E.G., GIL, L. & ESPLUGUES, J. Influence of capsaicin-sensitive afferent neurones on the acid secretory responses of the rat stomach *in vivo*, 100, 491

ESTAN, L., SENARD, J-M., TRAN, M-A., MONTASTRUC, J-L. & BERLAN, M. Reserpine induces vascular α_2 -adrenergic supersensitivity and platelet α_2 -adrenoceptor up-regulation in dog, 101, 329

ESTHER, J.W. *see* GIDDAY, J.M., 100, 95

ETOH, S., OHASHI, M., BABA, A. & IWATA, H. Inhibition by ibudilast of leukotriene D₄-induced formation of inositol phosphates in guinea-pig lung, 100, 564

EVANS, A.M. & GREEN, K.L. Characterization of the dopamine receptor mediating the hyperpolarization of cockroach salivary gland acinar cells *in vitro*, 101, 103

EVANS, R. *see* MOORE, P.K., 101, 865

EVANS, R.A. *see* MOORE, P.K., 99, 408

EVANS, R.H. *see* LONG, S.K., 100, 850

EVANS, R.G. & LUDBROOK, J. Effects of μ -opioid receptor agonists on circulatory responses to stimulated haemorrhage in conscious rabbits, 100, 421

EVANS, T.W. *see* CRAWLEY, D.E., 101, 166

F

FABBRI, L.M. *see* MAPP, C.E., 100, 886

FABRIS, B., YAMADA, H., CUBELA, R., JACKSON, B., MENDELSON, F.A.O. & JOHNSTON, C.I. Characterization of cardiac angiotensin converting enzyme (ACE) and *in vivo* inhibition following oral quinapril to rats, 100, 651

FAGG, G.E., OLPE, H.-R., POZZA, M.F., BAUD, J., STEINMANN, M., SCHMUTZ, M., PORTET, C., BAUMANN, P., THEDINGA, K., BITTIGER, H., ALLGEIER, H., HECKENDORN, R., ANGST, C., BRUNDISH, D. & DINGWALL, J.G. CGP 37849 and CGP 39551: novel and potent competitive N-methyl-D-aspartate receptor antagonists with oral activity, 99, 791

FAIRHALL, K.M. *see* BISSET, G.W., 99, 529

FANN, M.L., SOUCCAR, C. & LAPA, A.J. Phenthonium, quaternary derivative of (—)-hyoscyamine, enhances the spontaneous release of acetylcholine at rat motor nerve terminals, 100, 441

FANTOZZI, R. *see* BRUNELLESCHI, S., 100, 417

FARMER, J.B. *see* SMITH, G.W., 100, 295

FARMER, S.G. & TOGO, J. Effects of epithelium removal on relaxation of airway smooth muscle induced by vasoactive intestinal peptide and electrical field stimulation, 100, 73

FASCIOLI, J., VARGUS, L., LAMA, M.C. & NOLLY, H. Bradykinin-induced vasoconstriction of rat mesenteric arteries precontracted with noradrenaline, 101, 344

FEDAN, J.S. *see* LAMPORT, S.J., 99, 369

FEIFEL, R., WAGNER-RÖDER, M., STROHMAN, C., TACKE, R., WAELBROECK, M., CHRISTOPHE, J., MUTSCHLER, E. & LAMBRECHT, G. Stereoselective inhibition of muscarinic receptor subtypes by the enantiomers of hexahydro-difenidol and acetylenic analogues, 99, 455

FELDMAN, J., TIBIRICA, E., BRICCA, G., DONTENWILL, M., BELCOURT, A. & BOUSQUET, P. Evidence for the involvement of imidazoline receptors in the central hypotensive effect of rilmenidine in the rabbit, 100, 600

FERNANDES, L.B. & GOLDIE, R.G. Pharmacological evaluation of a guinea-pig tracheal epithelium-derived inhibitory factor (EpDIF), 100, 614

FERNANDES, P.D. *see* HENRIQUES, M.G.M.O., 99, 164

FERRELL, W.R. & KHOSHBATEN, A. The role of the endothelium in mediating the actions of ATP, adenosine and acetylcholine on

flow through blood vessels in the rabbit knee joint, **99**, 379

FERRY, C.B. *see* KELLY, S.S., **99**, 721

FIBIGER, H.C. *see* CLARKE, P.B.S., **99**, 509

FILE, S.E. *see* HITCHCOTT, P.K., **99**, 11

FINBERG, J.P.M. & VARDI, Y. Inhibitory effect of 5-hydroxytryptamine on penile erectile function in the rat, **101**, 698

FIRTH, J.L. *see* KENDALL, D.A., **100**, 37

FLEETWOOD-WALKER, S.M. *see* HOPE, P.J., **101**, 477

FLETCHER, P.J. & DAVIES, M. The involvement of 5-hydroxytryptaminergic and dopaminergic mechanisms in the eating induced by buspirone, gepirone and ipsapirone, **99**, 519

FLOCH, A. & CAVERO, I. Influence of plasma protein content and platelet number on the potency of PAF and its antagonist RP 59227 in rabbit platelet preparations, **100**, 163

FLORES, N.A. & SHERIDAN, D.J. Electrophysiological and arrhythmogenic effects of platelet activating factor during normal perfusion, myocardial ischaemia and reperfusion in the guinea-pig, **101**, 734

FONLUPT, P., CROSET, M. & LAGARDE, M. Benzodiazepine analogues inhibit arachidonate-induced aggregation and thromboxane synthesis in human platelets, **101**, 920

FONTELA, T., HERMIDA, O.G. & GÓMEZ-ACEBO, J. Role of adrenoceptors *in vitro* and *in vivo* in the effects of lithium on blood glucose levels and insulin secretion in the rat, **100**, 283

FORDER, R.A. *see* MORONEY, M.A., **101**, 128

FORSTER, C., MAIN, J.S. & ARMSTRONG, P.W. Endothelium modulation of the effects of nitroglycerin on blood vessels from dogs with pacing-induced heart failure, **101**, 109

FORSTER, P. *see* DRAY, A., **99**, 323

—, *see* DRAY, A., **101**, 727

FOSTER, C.D. *see* FUJII, K., **99**, 779

FOSTER, S.J., BRUNEAU, P., WALKER, E.R.H. & McMILLAN, R.M. 2-Substituted indazolines: orally active and selective 5-lipoxygenase inhibitors with anti-inflammatory activity, **99**, 113

FOSTER, S.J. *see* McMILLAN, R.M., **101**, 501

FOX, A.J. & MORTON, I.K.M. An examination of the 5-HT₃ receptor mediating contraction and evoked [³H]-acetylcholine release in the guinea-pig ileum, **101**, 553

FOZARD, J.R. *see* MOSER, P.C., **99**, 343

FOZARD, J.R. *see* WRIGHT, C.E., **100**, 107

FRASER, S. *see* KENNY, B.A., **100**, 211

FREDHOLM, B.B. *see* ANDINÉ, P., **100**, 814

FREEDMAN, S.B., HARLEY, E.A., PATEL, S., NEWBERRY, N.R., GILBERT, M.J., McKNIGHT, A.T., TANG, J.K., MAGUIRE, J.J., MUDUNKOTUWA, N.T., BAKER, R., STREET, L.J., MACLEOD, A.M., SAUNDERS, J. & IVERSEN, L.L. A novel series of non-quaternary oxadiazoles acting as full agonists at muscarinic receptors, **101**, 575

FREISSLUTH, M. *see* NANOFF, C., **100**, 63

FUJII, K., FOSTER, C.D., BRADING, A.F. & PAREKH, A.B. Potassium channel blockers and the effects of cromakalim on the smooth muscle of the guinea-pig bladder, **99**, 779

FUJIMORI, K. *see* NAKAZAWA, K., **101**, 224

FUKUMITSU, T., HAYASHI, H., TOKUNO, H. & TOMITA, T. Increase in calcium channel current by β -adrenoceptor agonists in single smooth muscle cells isolated from porcine coronary artery, **100**, 593

FURMAN, B.L. *see* DALZIEL, H.H., **99**, 820

—, *see* GUC, M.O., **101**, 913

FURUKAWA, T. *see* KATSURAGI, T., **100**, 370

G

GAGE, P.W., McARDLE, J.J. & SAINT, D.A. Effects of butanedione monoxime on neuromuscular transmission, **100**, 467

GALAND, N. *see* BOEYNAMS, J.-M., **101**, 799

GALEOTE, M.S. *see* DE AGUILERA, E.M., **99**, 439

GALITZKY, J., SENARD, J.M., LAFONTAN, M., STILLINGS, M., MONTASTRUC, J.L. & BERLAN, M. Identification of human platelet α_2 -adrenoceptors with a new antagonist [³H]-RX821002, 2-methoxy derivative of idazoxan, **100**, 862

GALPERN, W.R., MILLER, L.G., GREENBLATT, D.J. & SHADER, R.I. Differential effects of chronic lorazepam and alprazolam on benzodiazepine binding and GABA_A-receptor function, **101**, 839

GARCIA, A.G. *see* BALLESTA, J.J., **101**, 21

GARDINER, S.M., COMPTON, A.M. & BENNETT, T. Effects of indomethacin on the regional haemodynamic responses to low doses of endothelins and sarafotoxin, **100**, 158

—, Regional haemodynamic effects of endothelin-1 and endothelin-3 in conscious Long Evans and Brattleboro rats, **99**, 107

GARDINER, S.M., COMPTON, A.M., BENNETT, T., KEMP, P.A. & NEY, U. Synergistic internal carotid vasodilator effects of human α -calcitonin gene-related peptide and nimodipine in conscious rats, **99**, 830

GARDINER, S.M., COMPTON, A.M., BENNETT, T., PALMER, R.M.J. & MONCADA, S. Regional haemodynamic changes during oral ingestion of N^G-monomethyl-L-arginine or N^G-nitro-L-arginine methyl ester in conscious Brattleboro rats, **101**, 10

GARDINER, S.M., COMPTON, A.M., KEMP, P.A. & BENNETT, T. Regional and cardiac haemodynamic effects of N^G-nitro-L-arginine methyl ester in conscious Long Evans rats, **101**, 625

—, Regional and cardiac haemodynamic responses to glyceryl trinitrate, acetylcholine, bradykinin and endothelin-1 in conscious rats: effects of N^G-nitro-L-arginine methyl ester, **101**, 632

GARRATT, J.C. *see* WRIGHT, I.K., **99**, 221

GAUQUELIN, G. *see* RASCOL, O., **100**, 471

GAUTHERON, P. *see* SUGRUE, M.F., **99**, 59

GAUTIER, P. *see* RICHER, C., **100**, 557

GEELEN, G. *see* RASCOL, O., **100**, 471

GEFFNER, J.R. *see* SCHATTNER, M.A., **101**, 253

GERBES, A.L. *see* WITHERINGTON, P.G., **99**, 810

GETTINS, D. *see* STANFORD, S.C., **99**, 441

GHARIB, C. *see* RASCOL, O., **100**, 471

GHELARDINI, C., MALMBERG-AIELLO, P., GIOTTI, A., MALLANGIO, M. & BARTOLINI, A. Investigation into atropine-induced antinociception, **101**, 49

GHO, B.C.G. *see* SASSEN, L.M.A., **101**, 605

GHYSEL-BURTON, J. & GODFRAIND, T. Role of Na-H exchange in the inotropic action of Bay K 8644 and of ouabain in guinea-pig isolated atria, **100**, 717

GIACCHETTI, A. *see* MAGGI, C.A., **100**, 588

—, *see* MAGGI, C.A., **101**, 996

GIBSON, A., MIRZAZADEH, S., HOBBS, A.J. & MOORE, P.K. L-N^G-monomethyl arginine and L-N^G-nitro arginine inhibit non-adrenergic, non-cholinergic relaxation of the mouse anococcygeus muscle, **99**, 602

GIBSON, A. *see* HOBBS, A.J., **100**, 749

—, *see* MOORE, P.K., **99**, 408

—, *see* TUCKER, J.F., **100**, 661

GIDDAY, J.M., ESTHER, J.W., ELY, S.W., RUBIO, R. & BERNE, R.M. Time-dependent effects of theophylline on myocardial reactive hyperaemias in the anaesthetized dog, **100**, 95

GIL, L. *see* ESPLUGUES, J.V., **100**, 491

GILBERT, M.J. *see* FREEDMAN, S.B., **101**, 575

GILLESPIE, J.S. & SHENG, H. The effects of pyrogallol and hydroquinone on the response to NANC nerve stimulation in the rat anococcygeus and the bovine retractor penis muscles, **99**, 194

GIOTTI, A. *see* BRUNELLESCHI, S., **100**, 417

—, *see* GHELARDINI, C., **101**, 49

GIRODEAU, J.-M. *see* McMILLAN, R.M., **101**, 501

GIULIANI, S. *see* MAGGI, C.A., **99**, 186

GIUDICELLI, J.-F. *see* RICHER, C., **100**, 557

GIUDICI, L. *see* MICHELETTI, R., **100**, 395

GIULIANI, S. *see* MAGGI, C.A., **100**, 588

GLAVINOVIC, M.I. *see* TANG, R., **99**, 548

GODFRAIND, J.-M. Microionophoretic study with milacemide, a glycine precursor, on mammalian central nervous system cells, **100**, 119

GODFRAIND, T. *see* GHYSEL-BURTON, J., **100**, 717

GOEBEL, M. *see* CHRIST, D., **101**, 971

GOEL, R.K., TAVARES, I.A. & BENNETT, A. Effect of ethanol on eicosanoid synthesis by human gastric and colonic mucosal pieces, **99**, 289

GOLDIE, R.G. *see* FERNANDES, L.B., **100**, 614

—, *see* HENRY, P.J., **99**, 131

—, *see* HENRY, P.J., **99**, 136

—, *see* HENRY, P.J., **100**, 786

GÓMEZ-ACEBO, J. *see* FONTELA, T., **100**, 283

GONZALEZ, M.C. *see* LOPEZ-JARAMILLO, P., **101**, 489

GONZALEZ, M.P. *see* CASTRO, E., **100**, 360

GONZALES, R. *see* RIBEIRO, J.M.C., **101**, 932

GOOD, D.M. *see* SMALL, R.C., **100**, 516

GOPALAKRISHNAN, V. *see*, WANG, H., **100**, 5

GOTOH, Y. *see* YAMAMOTO, M., **100**, 669

GRAHAM, S.L. *see* SUGRUE, M.F., **99**, 59

GRAHAME-SMITH, D.G. *see* BACKUS, L.I., **100**, 793

GRAY, G.A. *see* DALZIEL, H.H., **99**, 820

GREEN, A.R., DESOUZA, R.J., DAVIES, E.M. & CROSS, A.J. The effects of Ca^{2+} antagonists and hydralazine on central 5-hydroxytryptamine biochemistry and function in rats and mice, **99**, 41

GREEN, K.L. *see* EVANS, A.M., 101, 103
 GREENBLATT, D.J. *see* GALPERN, W.R., 101, 839
 —, *see* KAPLAN, G.B., 100, 435
 GREENHOUSE, R. *see* PATMORE, L., 99, 687
 GRIESBACHER, T. *see* LEMBECK, F., 100, 49
 GRIFFITH, T.M. *see* RANDALL, M.D., 101, 781
 GRUBB, B.D. *see* BIRRELL, G.J., 101, 715
 GRUNDEMAR, L., GRUNDSTRÖM, N., JOHANSSON, G.M., ANDERSSON, R.G.G. & HÄKANSON, R. Suppression by neuropeptide Y of capsaicin-sensitive sensory nerve-mediated contraction in guinea-pig airways, 99, 473
 GRUNDEMAR, L. & HÖGESTÄTT, E.D. Vascular effects of helodermine, helospectin I and helospectin II: a comparison with vasoactive intestinal peptide (VIP), 99, 526
 GRUNDSTRÖM, N. *see* GRUNDEMAR, L., 99, 473
 GUARD, S., WATSON, S.P., MAGGIO, J.E., TOO, H.P. & WATLING, K.J. Pharmacological analysis of [³H]-sektide binding to NK₃ tachykinin receptors in guinea-pig ileum longitudinal muscle-myenteric plexus and cerebral cortex membranes, 99, 767
 GUARD, S. *see* SUMAN-CHAUHAN, N., 101, 1001
 GUC, M.O., FURMAN, B.L. & PARRATT, R.J. Endotoxin-induced impairment of vasopressor and vasodepressor responses in the pithed rat, 101, 913
 GUELFI, M. *see* SUBISSI, A., 100, 502
 GUIMARAES, S. & NUNES, J.P. The effectiveness of α_2 -adrenoceptor activation increases from the distal to the proximal part of the veins of canine limbs, 101, 387
 GUNASEKERA, R.D. & KURIYAMA, H. The influence of thyroid states upon responses of the rat aorta to catecholamines, 99, 541
 GUNN, L.K. *see* BISSET, G.W., 99, 529
 GUSTAFSSON, L.E. *see* PERSSON, M.G., 100, 463
 GUTIERREZ, L.M. *see* BALLESTA, J.J., 101, 21

H

HAGAN, R.M., JONES, B.J., JORDAN, C.C. & TYERS, M.B. Effect of 5-HT₃ receptor antagonists on responses to selective activation of mesolimbic dopaminergic pathways in the rat, 99, 227
 HAGBERG, H. *see* ANDINÉ, P., 100, 814
 HAGUE, N.L. *see* PERREAUULT, C.L., 101, 679
 HÄKANSON, R. *see* GRUNDEMAR, L., 99, 473
 —, *see* GRUNDEMAR, L., 100, 190
 HALL, I.P., DONALDSON, J. & HILL, S.J. Modulation of fluoroaluminate-induced inositol phosphate formation by increases in tissue cyclic AMP content in bovine tracheal smooth muscle, 100, 646
 HALLAM, T.J. *see* MURRAY, K.J., 99, 612
 HAMID-BLOOMFIELD, S., PAYNE, A.N., PETROVIC, A.A. & WHITTLE, B.J.R. The role of prostanoid TP- and DP-receptors in the bronchoconstrictor effect of inhaled PGD₂ in anaesthetized guinea-pigs: effect of the DP-antagonist BW A868C, 100, 761
 HANAKI, Y. *see* SANO, T., 99, 577
 HANDLEY, D.A. *see* HAVILL, A.M., 99, 396
 HARA, M. *see* OTANI, H., 100, 207
 HARAKAL, C. *see* AKSOY, M.O., 99, 461
 HARDING, S.E. *see* BROWN, L.A., 101, 484
 HARLEY, E.A. *see* FREEDMAN, S.B., 101, 575
 HARPER, D. *see* LEFF, P., 101, 55
 HARRIS, G. *see* BARLOW, R.B., 99, 622
 HARRIS, P.J. *see* SUNN, N., 99, 655
 HART, S.L. & OLUYOMI, A.O. Vasopressin and stress-induced antinociception in the mouse, 99, 243
 HARTELL, N.A. & HEADLEY, P.M. Spinal effects of four injectable anaesthetics on nociceptive reflexes in rats: a comparison of electrophysiological and behavioural measurements, 101, 563
 HARVEY, A.L. *see* ROWAN, E.G., 100, 301
 HASEGAWA, J., HIRAI, S., NOGUCHI, N., HISTOME, I., KOTAKE, H. & MASHIBA, H. Use-dependent effects of pirmenol on V_{max} and conduction in guinea-pig ventricular myocardium, 99, 815
 HASHIMOTO, H. *see* ITAYA, T., 99, 572
 HASHIMOTO, S. *see* MURAMATSU, I., 99, 197
 HATA, F., KATAOKA, T., TAKEUCHI, T., YAGASAKI, O. & YAMANO, N. Differences in control of descending inhibition in the proximal and distal regions of rat colon, 101, 1011
 HATT, P.A. *see* SPICER, B.A., 101, 821
 HATTORI, Y. *see* TOHSE, N., 99, 437
 HAVILL, A.M., VAN VALEN, R.G. & HANDLEY, D.A. Prevention of non-specific airway hyperreactivity after allergen challenge in guinea-pigs by the PAF receptor antagonist SDZ 64-412, 99, 396
 HAWORTH, D. *see* KOWALSKI, M.T., 99, 27
 HAY, D.W.P. Mechanism of endothelin-induced contraction in guinea-pig trachea: comparison with rat aorta, 100, 383
 HAYASHI, O. *see* ITO, S., 99, 13
 HAYASHI, H. *see* FUKUMITSU, T., 100, 593
 HAYES, A.G., BIRCH, P.J., HAYWARD, N.J., SHEEHAN, M.J., ROGERS, H., TYERS, M.B., JUDD, D.B., SCOPES, D.I.C. & NAYLOR, A. A series of novel, highly potent and selective agonists for the κ -opioid receptor, 101, 944
 HAYLOR, J. *see* BURTON, G.A., 99, 364
 HAYWARD, N.J. *see* HAYES, A.G., 101, 944
 HEADLEY, P.M. *see* HARTELL, N.A., 101, 563
 HEAL, D.J. *see* WHITWORTH, P., 101, 39
 HECKENDORN, R. *see* FAGG, G.E., 99, 791
 HECKER, M., MITCHELL, J.A., SWIERKOSZ, T.A., SESSA, W.C. & VANE, J.R. Inhibition by L-glutamate of the release of endothelium-derived relaxing factor from cultured endothelial cells, 101, 237
 HEDQVIST, P. *see* PERSSON, M.G., 100, 463
 HEESEN, B.-J. & DE MEY, J.G.R. Effects of cyclic AMP-affecting agents on contractile reactivity of isolated mesenteric and renal resistance arteries of the rat, 101, 859
 HEILIGERS, J.P.C. *see* VILLALÓN, C.M., 100, 665
 HENDERSON, G. *see* ROGERS, H., 101, 505
 HENDRICKSON, H. *see* BOULANGER, C., 99, 176
 HENQUIN, J.C. *see* PLANT, T.D., 101, 115
 HENRIQUES, M.G.M.O., WEG, V.B., MARTINS, M.A., SILVA, P.M.R., FERNANDES, P.D., CORDEIRO, R.S.B. & VARGAF-TIG, B.B. Differential inhibition by two heptazepine PAF antagonists of acute inflammation in the mouse, 99, 164
 HENRY, P.J. & GOLDIE, R.G. β_1 -Adrenoceptors mediate smooth muscle relaxation in mouse isolated trachea, 99, 131
 HENRY, P.J., RIGBY, P.J. & GOLDIE, R.G. Distribution of β_1 - and β_2 -adrenoceptors in mouse trachea and lung: a quantitative autoradiographic study, 99, 136
 HENRY, P.J., RIGBY, P.J., SELF, G.J., PREUSS, J.M. & GOLDIE, R.G. Relationship between endothelin-1 binding site densities and constrictor activities in human and animal airway smooth muscle, 100, 786
 HERING, S. *see* HUGHES, A.D., 101, 3
 HERMAN, A.G. *see* BOECKXSTAENS, G.E., 101, 460
 HERMIDA, O.G. *see* FONTELA, T., 100, 283
 HEW, R.W.S., HODGKINSON, C.R. & HILL, S.J. Characterization of histamine H₃-receptors in guinea-pig ileum with H₃-selective ligands, 101, 621
 HIBERT, M.F. *see* MOSER, P.C., 99, 343
 HICKS, T.P. *see* KANEKO, T., 100, 689
 HIDALGO, M.J. *see* BALLESTA, J.J., 101, 21
 HIGENBOTTAM, T.W. *see* DINH XUAN, A.T., 99, 9
 HIGG, L. *see* CARR, R.D., 100, 83
 HILEY, C.R., JONES, C.R., PELTON, J.T. & MILLER, R.C. Binding of [¹²⁵I]-endothelin-1 to rat cerebellar homogenates and its interactions with some analogues, 101, 319
 HILEY, C.R. *see* DOUGLAS, S.A., 101, 81
 —, *see* MACLEAN, M.R., 99, 340
 HILL, R.G. *see* TRAYNOR, J.R., 100, 319
 HILL, S.J. *see* HALL, I.P., 100, 646
 —, *see* HEW, R.W.S., 101, 621
 HIRAI, S. *see* HASEGAWA, J., 99, 815
 HIRANO, K., KANAIDE, H., ABE, S. & NAKAMURA, M. Effects of diltiazem on calcium concentrations in the cytosol and on force of contractions in porcine coronary arterial strips, 101, 273
 HIRSH, J.K., SILINSKY, E.M. & SOLSONA, C.S. The role of cyclic AMP and its protein kinase in mediating acetylcholine release and the action of adenosine at frog motor nerve endings, 101, 311
 HISATOME, I. *see* HASEGAWA, J., 99, 815
 HISAYAMA, T., TAKAYANAGI, I. & OKAMOTO, Y. Ryanodine reveals multiple contractile and relaxant mechanisms in vascular smooth muscle: simultaneous measurements of mechanical activity and of cytoplasmic free Ca²⁺ level with fura-2, 100, 677
 HITCHCOTT, P.K., FILE, S.E., EKWURU, M. & NEAL, M.J. Chronic diazepam treatment in rats causes long-lasting changes in central [³H]-5-hydroxytryptamine and [¹⁴C]- γ -aminobutyric acid release, 99, 11
 HOBBS, A.J. & GIBSON, A. L-N^G-nitro-arginine and its methyl ester are potent inhibitors of non-adrenergic, non-cholinergic

transmission in the rat anococcygeus, 100, 749

HOBBS, A.J. *see* GIBSON, A., 99, 602

—, *see* TUCKER, J.F., 100, 661

HODGKINSON, C.R. *see* HEW, R.W.S., 101, 621

HODSON, H.F. *see* REES, D.D., 101, 746

HÖGESTÄTT, E.D. *see* GRUNDEMAR, L., 99, 526

—, *see* SKÄRBY, T.V.Ch., 101, 961

HOLDUP, D.W. *see* BARLOW, R.B., 99, 622

HOLLINGSWORTH, M. *see* PIPER, I., 101, 901

HONEGGER, U. *see* PIROVINO, M., 99, 35

HONG, S.J. & CHANG, C.C. Facilitation by 3,4-diaminopyridine of regenerative acetylcholine release from mouse motor nerve, 101, 793

HONORÉ, T. *see* TRICKLEBANK, M.D., 101, 753

HOPE, P.J., FLEETWOOD-WALKER, S.M. & MITCHELL, R. Distinct antinociceptive actions mediated by different opioid receptors in the region of lamina I and laminae III-V of the dorsal horn of the rat, 101, 477

HOPE, W. *see* MEYER, R.B.R., 100, 576

HORIO, S., NAKAMURA, S. & ISHIDA, Y. Alterations in histamine receptors of guinea-pig ileal smooth muscle produced during agonist-induced desensitization, 101, 587

HORIO, S., SHIMA, M., UEDA, H. & ISHIDA, Y. Temperature-dependence of desensitization induced by acetylcholine and histamine in guinea-pig ileal longitudinal muscle, 100, 636

HORWELL, D.C. *see* HUNTER, J.C., 101, 183

HOUCK, W.T. *see* TUMER, N., 99, 87

HOULT, J.R.S. *see* MORONEY, M.A., 101, 128

HOURANI, S.M.O. *see* BAILEY, S.J., 100, 753

—, *see* NICHOLLS, J., 100, 874

HOWSON, W. *see* SEABROOK, G.R., 101, 949

HOYLE, C.H.V., KNIGHT, G.E. & BURNSTOCK, G. Suramin antagonizes responses to P_2 -purinoceptor agonists and purinergic nerve stimulation in the guinea-pig urinary bladder and taenia coli, 99, 617

HSIEH, J. *see* MOUSA, S.A., 99, 233

HUANG, J.-H. & JOHNSTON, G.A.R. (+)-Hydrastine, a potent competitive antagonist at mammalian $GABA_A$ receptors, 99, 727

HUDLICKÁ, O. & PRICE, S. Effects of torbaflidine, pentoxifylline and buflomedil on vascularisation and fibre type of rat skeletal muscles subjected to limited blood supply, 99, 786

HUGHES, A.D., HERING, S. & BOLTON, T.B. Evidence that agonist and antagonist enantiomers of the dihydropyridine PN 202-791 act at different sites on the voltage-dependent calcium channel of vascular muscle, 101, 3

HUGHES, I.E. *see* EL-MAS, M., 101, 762

HUGHES, J. *see* HUNTER, J.C., 101, 183

—, *see* MARSHALL, F.H., 99, 845

—, *see* TRAYNOR, J.R., 100, 319

HUGUENARD, J.R. *see* COULTER, D.A., 100, 800

—, *see* COULTER, D.A., 100, 807

HUMPHREY, P.P.A. *see* SUMNER, M.J., 99, 219

HUMPHREY, S.M. *see* BROWN, L.A., 101, 484

HUNTER, J.C., LEIGHTON, G.E., MEECHAM, K.G., BOYLE, S., HORWELL, D.C., REES, D.C. & HUGHES, J. CI-977, a novel and selective agonist for the κ -opioid receptor, 101, 183

HUNTER, J.C. *see* TRAYNOR, J.R., 100, 319

HUTCHESON, I.R., WHITTLE, B.J.R. & BOUGHTON-SMITH, N.K. Role of nitric oxide in maintaining vascular integrity in endotoxin-induced intestinal damage in the rat, 101, 815

HUTCHINSON, R. *see* CARR, R.D., 100, 90

HUTTUNEN, P. *see* KORTELAINEN, M-L., 99, 673

I

ICHINOSE, M. & BARNES, P.J. The effect of peptidase inhibitors on bradykinin-induced bronchoconstriction in guinea-pigs *in vivo*, 101, 77

IGGO, A. *see* BIRRELL, G.J., 101, 715

IMAIUMI, I. *see* RYANG, S., 100, 401

IMAIUMI, Y. *see* MURAKI, K., 100, 507

—, *see* YAMAMOTO, M., 100, 669

INAGAKI, C. *see* OTANI, H., 100, 207

INCE, F. *see* SMITH, G.W., 100, 295

INOUE, R. & BRADING, A.F. The properties of the ATP-induced depolarization and current in single cells isolated from the guinea-pig urinary bladder, 100, 619

INOUE, K. *see* NAKAZAWA, K., 101, 224

INOUE, M. *see* OTANI, H., 100, 207

INVERNIZZI, R., MORALI, F., POZZI, L. & SAMANIN, R. Effects of acute and chronic clozapine on dopamine release and metabolism in the striatum and nucleus accumbens of conscious rats, 100, 774

IRELAND, S.J. *see* BUTLER, A., 101, 591

IRIARTE, C.F., PASCUAL, R., VILLANUEVA, M.M., ROMÁN, M., CORTIJO, J. & MORCILLO, E.J. Role of epithelium in agonist-induced contractile responses of guinea-pig trachealis: influence of the surface through which drug enters the tissue, 101, 257

IRURZUN, A. *see* DE AGUILERA, E.M., 99, 439

ISHIDA, Y. *see* HORIO, S., 100, 636

—, *see* HORIO, S., 101, 587

ISHIMA, T. *see* KOJIMA, M., 99, 334

ISTURIZ, M.A. *see* SCHATTNER, M.A., 101, 253

ITABASHI, S. *see* AIKAKA, T., 101, 13

ITAYA, T., HASHIMOTO, H., UEMATSU, T. & NAKASHIMA, M. Alterations of responsiveness to adrenoceptor agonists and calcium of non-infarcted hypertrophied muscles from rats with chronic myocardial infarction, 99, 572

ITO, K. *see* NASHIMURA, M., 100, 114

ITO, S., OKUDA, E., SUGAMA, K., NEGISHI, M. & HAYASHI, O. Evaluation of ZK110841 and AH6809, an agonist and an antagonist of prostaglandin DP-receptors on human platelets, with a PGD₂-responsive cell line from bovine embryonic trachea, 99, 13

ITO, S. *see* OHTA, T., 100, 231

IVEN, H. *see* von POEHL, C., 101, 406

IVERSEN, L.L. *see* FREEDMAN, S.B., 101, 575

IVERSEN, S.D. *see* TRICKLEBANK, M.D., 101, 753

IWATA, H. *see* ETOH, S., 100, 564

J

JACKSON, B. *see* FABRIS, B., 100, 651

JACOBS, M., PLANE, F. & BRUCKDORFER, K.R. Native and oxidized low-density lipoproteins have different inhibitory effects on endothelium-derived relaxing factor in the rabbit aorta, 100, 21

JAHNSEN, H. *see* REKLING, J.C., 99, 103

JAKUBOVIC, A. *see* CLARKE, P.B.S., 99, 509

JAMES, I.F., BETTANEY, J., PERKINS, M.N., KETCHUM, S.B. & DRAY, A. Opioid receptor ligands in the neonatal rat spinal cord: binding and *in vitro* depression of the nociceptive responses, 99, 508

JANSEN, I. *see* EDVINSSON, L., 100, 312

JANSSEN, P.A.J. *see* DE CLERK, F., 99, 631

JOHANSSON, I.G.M. *see* GRUNDEMAR, L., 99, 473

JOHANSEN, T. *see* KNUDSEN, T., 100, 453

JOHN, G.W., DOXEY, J.-C., WALTER, D.S. & REID, J.L. The role of α - and β -adrenoceptor subtypes in mediating the effects of catecholamines on fasting glucose and insulin concentrations in the rat, 100, 699

JOHNS, E.J. & RUTKOWSKI, B. The action of atriopeptin III on renal function in two models of chronic renal failure in the rat, 99, 317

JOHNSTON, C.I. *see* FABRIS, B., 100, 651

JOHNSTON, G.A.R. *see* HUANG, J.-H., 99, 727

JONES, B.J. *see* HAGAN, R.M., 99, 227

JONES, C.R. *see* HILEY, C.R., 101, 319

JONES, J.A., OWEN, P.J. & BOARDER, M.R. Influence of phorbol esters, and diacylglycerol kinase and lipase inhibitors on noradrenaline release and phosphoinositide hydrolysis in chromaffin cells, 101, 521

JONES, M.G., ANIS, N.A. & LODGE, D. Phalloidin blocks quisqualate-, AMPA- and kainate-, but not NMDA-, induced excitation of rat brainstem neurones *in vivo*, 101, 968

JORDAN, C.C. *see* HAGAN, R.M., 99, 227

JUDD, D.B. *see* HAYES, A.G., 101, 944

JUKIC, D. *see* RHALEB, N-E., 99, 445

K

KAJIKURI, J. & KURIYAMA, H. Inhibitory action of α -human atrial natriuretic peptide on noradrenaline-induced synthesis of myo-inositol 1,4,5-trisphosphate in the smooth muscle cells of rabbit aorta, 99, 536

KALKMAN, H.O. *see* BODDEKE, H.W.G.M., 101, 281

KAMIYA, K. *see* KODAMA, I., 101, 803

KANAIDE, H. *see* ABE, S., 101, 545

—, *see* HIRANO, K., 101, 273

KANE, K.A. *see* KWAN, Y.W., 100, 407

—, *see* WADSWORTH, R.M., 99, 774

KANEKO, T. & HICKS, T.P. GABA_B-related activity involved in synaptic processing of somatosensory information in S1 cortex of the anaesthetized cat, **100**, 689

KANNO, M. *see* TOHSE, N., **99**, 437

KANTELIP, J.-P. *see* MAZOIT, J.X., **101**, 843

KAPLAN, G.B., TAI, N.T., GREENBLATT, D.J. & SHADER, R.I. Caffeine-induced behavioural stimulation is dose- and concentration-dependent, **100**, 435

KARMAZYN, M., WATSON, J.E. & MOFFAT, M.P. Mechanisms for cardiac depression induced by phorbol myristate acetate in working rat hearts, **100**, 826

KATAOKA, T. *see* HATA, F., **101**, 1011

KATO, H. *see* KURIHARA, J., **99**, 91

KATSOULIS, S., SCHMIDT, W.E., SCHWÖRER, H. & CREUTZFELDT, W. Effects of galanin, its analogues and fragments on rat isolated fundus strips, **101**, 297

KATSURAGI, T., USUNE, S. & FURUKAWA, T. Antagonism by nifedipine of contraction and Ca²⁺-influx evoked by ATP in guinea-pig urinary bladder, **100**, 370

KATSUYAMA, H., SUZUKI, S. & NISHIYE, E. Actions of second messengers synthesized by various spasmogenic agents and their relation to mechanical responses in dog tracheal smooth muscle, **100**, 41

KAUmann, A.J., SANDERS, L., BROWN, A.M., MURRAY, K.J. & BROWN, M.J. A 5-hydroxytryptamine receptor in human atrium, **100**, 879

KAWAI, T. *see* MURAKI, K., **100**, 507

—, *see* RYANG, S., **100**, 401

KAWAI, Y. *see* SHIRAI, K., **101**, 200

KAWAMURA, T. *see* KODAMA, I., **101**, 803

KAY, P.B. *see* NEWGREEN, D.T., **100**, 605

KEEN, M. *see* KELLY, E., **99**, 309

—, *see* KELLY, E., **100**, 223

KELLY, E., KEEN, M., NOBBS, P. & MACDERMOT, J. NaF and guanine nucleotides modulate adenylate cyclase activity in NG108-15 cells by interacting with both G_s and G_i, **100**, 223

—, Segregation of discrete G_{αs}-mediated responses that accompany homologous or heterologous desensitization in two related somatic hybrids, **99**, 309

KELLY, S.S., FERRY, C.B. & BAMFORTH, J.P. The effects of anticholinesterases on the latencies of action potentials in mouse skeletal muscles, **99**, 721

KEMP, J.A. *see* TRICKLEBANK, M.D., **101**, 753

KEMP, P.A. *see* GARDINER, S.M., **99**, 830

—, *see* GARDINER, S.M., **101**, 625

—, *see* GARDINER, S.M., **101**, 632

KENDALL, D.A. & FIRTH, J.L. Inositol phospholipid hydrolysis in human brain: adenosine inhibition of the response to histamine, **100**, 37

KENDALL, D.A. & WHITWORTH, P. Lithium amplifies inhibitions of inositol phospholipid hydrolysis in mammalian brain slices, **100**, 723

KENDALL, D.A. *see* ROBINSON, J.P. **100**, 3

—, *see* WHITWORTH, P., **101**, 39

KENNEDY, I. *see* SMALL, R.C., **100**, 516

KENNY, B.A., FRASER, S., KILPATRICK, A.T. & SPEDDING, M. Selective antagonism of calcium channel activators by fluspirilene, **100**, 211

KENT, A.P., STERN, G.M. & WEBSTER, R.A. The effect of benzazide on the peripheral and central distribution and metabolism of levodopa after acute and chronic administration in the rat, **100**, 743

KERNOHAN, W.G. *see* CARLISLE, E.J.F., **100**, 530

KERR, D.I.B., ONG, J. & PRAGER, R.H. Antagonism of GABA_B-receptor-mediated responses in the guinea-pig isolated ileum and vas deferens by phosphono-analogues of GABA, **99**, 422

KESINGLAND, A.C. *see* SINGH, L., **99**, 145

KETCHUM, S.B. *see* JAMES, I.F., **99**, 503

KHATTER, J.C. *see* NAVARATNAM, S., **101**, 370

KHOSHBATEN, A. *see* FERRELL, W.R., **99**, 379

KIGOSHI, S. *see* MURAMATSU, I., **99**, 197

—, *see* MURAMATSU, I., **101**, 662

—, *see* OHMURA, T., **99**, 587

—, *see* OHMURA, T., **100**, 27

KIHIRA, M., MATSUZAWA, K., TOKUNO, H. & TOMITA, T. Effects of calmodulin antagonists on calcium-activated potassium channels, in pregnant rat myometrium, **100**, 353

KILLINGBACK, P.G. *see* CARR, R.D., **100**, 83

KILPATRICK, A.T. *see* BROWN, C.M., **99**, 481

—, *see* BROWN, C.M., **99**, 803

KILPATRICK, G.J. *see* BUTLER, A., **101**, 591

KILPATRICK, T. *see* KENNY, B.A., **100**, 211

KIMURA, K. *see* KOJIMA, M., **99**, 334

KING, A.D., MILAVEC-KRIZMAN, M. & MÜLLER-SCHWEINITZER, E. Characterization of the adenosine receptor in porcine coronary arteries, **100**, 483

KING, R.G. *see* LAU, W.A.K., **101**, 394

—, *see* RECHTMAN, M.P., **101**, 269

KING, S.J. *see* COCKS, T.M., **100**, 375

KINGMAN, T.A. *see* EDVINSSON, L., **100**, 312

KINGS, M.A. *see* SANJAR, S., **99**, 267

—, *see* SANJAR, S., **100**, 399

KINNUUNEN, P., TASKINEN, T., LEPPÄLUOTO, J. & RUSKO-OHA, H. Release of atrial natriuretic peptide from rat myocardium *in vitro*: effect of minoxidil-induced hypertrophy, **99**, 701

KINTER, L.B. *see* BROOKS, D.P., **99**, 750

KIRSTERSSON, A. *see* SANJAR, S., **99**, 679

KISARA, K. *see* SAKURADA, T., **101**, 307

KITCHEN, I. & PINKER, S.R. Antagonism of swim-stress-induced antinociception by the δ -opioid receptor antagonist naltrindole in adult and young rats, **100**, 685

KITCHEN, I. *see* NICHOLS, J., **100**, 874

KLEIN, M.M. *see* SCHMIDT, H.H.H.W., **101**, 145

KLING, L. *see* DORSZEWSKI, A., **101**, 686

KLINGE, E. *see* ALRANTA, S., **101**, 472

KNIGHT, A.R. *see* TRICKLEBANK, M.D., **101**, 753

KNIGHT, G. *see* HOYLE, C.H.V., **99**, 617

KNUDSEN, T., BERTHELSEN, H.C. & JOHANSEN, T. Inhibition of Na⁺-K⁺ pump activity by divalent cations in intact peritoneal mast cells of the rat, **100**, 453

KODAMA, I., KAMIYI, K., KAWAMURA, T., SUZUKI, R. & TOYAMA, J. Electrophysiological effects of AFD-21 and AFD-19, new antiarrhythmic compounds on papillary muscles and single ventricular myocytes isolated from guinea-pig hearts, **101**, 803

KODAMA, I. *see* KONDO, N., **101**, 241

KOHL, C., LINCK, B., SCHMITZ, W., SCHOLZ, H., SCHOLZ, J. & TÓTH, M. Effects of carbachol and (–)-N⁶-phenylisopropyladenosine on myocardial inositol phosphate content and force of contraction, **101**, 829

KOHLENBACH, A. & SCHLICKER, E. GABA_B receptor-mediated inhibition of the neurogenic vasopressor response in the pithed rat, **100**, 365

KOJIMA, M., ISHIMA, T., TANIGUCHI, N., KIMURA, K., SADA, H. & SPERELAKIS, N. Developmental changes in β -adrenoceptors, muscarinic cholinoreceptors and Ca²⁺ channels in rat ventricular muscles, **99**, 334

KOJIMA, M., SADA, H. & SPERELAKIS, N. Developmental changes in β -adrenergic and cholinergic interactions on calcium-dependent slow action potentials in rat ventricular muscles, **99**, 327

KOJIMA, T. *see* MURAKI, K., **100**, 507

KOK, P.T.M. *see* BRUIJNZEEL, P.L.B., **99**, 798

KONDO, N., KODAMA, I., KOTAKE, H. & SHIBATA, S. Electrical effects of okadaic acid extracted from black sponge on rabbit sinus node, **101**, 241

KONDO, N., MIZUKAMI, M. & SHIBATA, S. Negative inotropic effects of disopyramide on guinea-pig papillary muscles, **101**, 789

KONING, M.M.G. *see* SASSEN, L.M.A., **99**, 355

KORBUT, R. *see* LIDBURY, P.S., **101**, 527

—, *see* SALVEMINI, D., **101**, 991

KORTELAINEN, M.-L., HUTTUNEN, P. & LAPINLAMPI, T. Influence of two β -adrenoceptor antagonists, propranolol and pindolol, on cold adaptation in the rat, **99**, 673

KORTH, M. *see* SCHMIED, R., **99**, 401

KOSTER, P.F. *see* BROOKS, D.P., **99**, 750

KOSTER, P.F. *see* NICHOLS, A.J., **99**, 597

KOTAKE, H. *see* HASEGAWA, J., **99**, 815

—, *see* KONDO, N., **101**, 241

KOWALSKI, M.T., HAWORTH, D., LU, X., THOMSON, D.S. & BARNETT, D.B. Comparison of the effects of xamoterol and isoprenaline on rat cardiac β -adrenoceptors: studies of function and regulation, **99**, 27

KREJCY, K. *see* KRUMPL, G., **100**, 855

KREUKNIET, J. *see* BRUIJNZEEL, P.L.B., **99**, 798

KRUMPL, G., TODT, H., KREJCY, K. & RABERGER, G. Antiarrhythmic efficacy of labetalol as assessed by programmed electrical stimulation, **100**, 855

KUMAMOTO, E. & SHINNICK-GALLAGHER, P. Action of an irreversible acetylcholine esterase inhibitor, soman, on muscarinic hyperpolarization in cat bladder parasympathetic ganglia, **99**,

157
 KUNOS, G. *see* VARGA, K., 101, 773
 KUNYSZ, E.A. *see* EGLEN, R.M., 99, 637
 KÜPFER, A. *see* PRIOVINO, M., 99, 35
 KURIHARA, J., SAHARA, T. & KATO, H. Protective effect of beraprost sodium, a new chemically stable prostacyclin analogue, against the deterioration of baroreceptor reflex following transient global cerebral ischaemia in dogs, 99, 91
 KURIYAMA, H. *see* GUNASEKERA, R.D., 99, 541
 —, *see* KAJIKURI, J., 99, 536
 —, *see* NAKASHIMA, M., 101, 581
 KWAN, Y.W., WADSWORTH, R.M. & KANE, K.A. Effects of neuropeptide Y and calcitonin gene-related peptide on sheep coronary artery rings under oxygenated, hypoxic and simulated myocardial ischaemic conditions, 99, 774
 KWAN, Y.W., WADSWORTH, R.M. & KANE, K.A. Modification of the ischaemic-induced contraction in the sheep circumflex coronary artery by various pharmacological antagonists, 100, 407

L

LACEY, M.G., MERCURI, N.B. & NORTH, R.A. Actions of cocaine on rat dopaminergic neurones *in vitro*, 99, 731
 LACEY, M.G. *see* SEABROOK, G.R., 101, 949
 LAFONTAN, M. *see* GALITZKY, J., 100, 862
 LAGARDE, M. *see* FONLUPT, P., 101, 920
 LAGARDE, M. *see* FONLUPT, P., 101, 920
 LAGLENTE, V. *see* ADVENIER, C., 100, 168
 LAGNEAU, C. *see* BOEYNAMS, J.-M., 101, 799
 LAI, J. *see* WATSON, S.P., 99, 216
 LAMA, M.C. *see* FASCIOLI, J., 101, 344
 LAMBRECHT, G. *see* FEIFEL, R., 99, 445
 LAMPORT, S.J. & FEDAN, J.S. Modulation of the reactivity of the guinea-pig isolated trachealis by respiratory epithelium: effects of cooling, 99, 369
 LANG, D. *see* SMITH, J.A., 99, 565
 LANGEMEIJER, M.W.E. *see* DINGEMANSE, J., 99, 53
 LANOUE, C. *see* CADIEUX, A., 101, 193
 LAPA, A.J. *see* FANN, M.L., 100, 441
 LAPINLAMPI, T. *see* KORTELAINEN, M.-L., 99, 673
 LATHROP, D.A., NÁNAŠI, P.P. & VARRÓ, A. *In vitro* cardiac models of dog Purkinje fibre triggered and spontaneous electrical activity: effects of nicorandil, 99, 119
 LATHROP, D.A. & VARRÓ, A. The combined electrophysiological effects of lignocaine and sotalol in canine isolated cardiac Purkinje fibres are rate-dependent, 99, 124
 LAU, W.A.K., KING, R.G. & BOURA, A.L.A. Methoxyphanamine inhibits basal and histamine-induced nasal congestion in anaesthetized rats, 101, 394
 LAURESEN, A.M. *see* REKLING, J.C., 99, 103
 LAVIOLETTE, M. *see* MÉNARD, L., 100, 15
 LAYCOCK, S.M. *see* SPICER, B.A., 101, 821
 LAZZARI, M.A. *see* SCHATTNER, M.A., 101, 253
 LEAHEY, W. *see* CARLISLE, E.J.F., 100, 530
 LEATHARD, H.L. *see* NORMAN, B.J., 101, 27
 LEDDA, F. *see* BRUNELLESCHI, S., 100, 417
 —, *see* MANTELLI, L., 99, 717
 LEE, M.R. *see* BOATENG, Y.A., 101, 301
 LEFF, P., HARPER, D., DAINTY, I.A. & DOUGALL, I.G. Pharmacological estimation of agonist affinity: detection of errors that may be caused by the operation of receptor isomerisation or ternary complex mechanisms, 101, 55
 LEFF, P., WOOD, B.E. & O'CONNOR, S.E. Suramin is a slowly-equilibrating but competitive antagonist at P_{2x} -receptors in the rabbit isolated ear artery, 101, 645
 LEFF, P. *see* O'CONNOR, S.E., 101, 640
 LEFORT, J. *see* DESQUAND, S., 100, 217
 LEGRAND, A.M. *see* MOLGÓ, J., 99, 695
 LEIGHTON, G.E. *see* HUNTER, J.C., 101, 183
 LEMBECK, F., GRIESBACHER, T. & ECKHARDT, M. Demonstration of extrapulmonary activity of angiotensin converting enzyme in intact tissue preparations, 100, 49
 LEPPÄLUOTO, J. *see* KINNUNEN, P., 99, 701
 LEUNG, C.M.K., DAI, S. & OGLE, C.W. Changes in preganglionic sympathetic nerve function following chronic morphine treatment in rats, 99, 247
 LEURS, R., SMIT, M.J., BAST, A. & TIMMERMAN, H. Different profiles of desensitization dynamics in guinea-pig jejunal longitudinal smooth muscle after stimulation with histamine and methacholine, 101, 881
 LEVI, S. *see* ANTUNES, E., 101, 986
 LEWIS, D.I. & COOTE, J.H. The influence of 5-hydroxytryptamine agonists and antagonists on identified sympathetic preganglionic neurones in the rat, *in vivo*, 99, 672
 LEWIS, M.J. *see* DICKIE, B.G.M., 101, 8
 LI, C.G. *see* DE LUCA, A., 101, 437
 LI, Y. *see* NAKASHIMA, M., 101, 581
 LIDBURY, P.S., KORBUT, R. & VANE, J. Sodium nitroprusside modulates the fibrinolytic system in the rabbit, 101, 527
 LIGHTLY, E.R.T., WALKER, S.W., BIRD, I.M. & WILLIAMS, B.C. Subclassification of β -adrenoceptors responsible for steroidogenesis in primary cultures of bovine adrenocortical zona fasciculata/reticularis cells, 99, 709
 LINCK, B. *see* KOHL, C., 101, 829
 LITTLE, H.J. *see* APPLEYARD, M.E., 101, 599
 —, *see* STANFORD, S.C., 99, 441
 —, *see* DOLIN, S.J., 101, 691
 LIU, G.Q. *see* LU, Y.M., 101, 45
 LIU, S.F. *see* CRAWLEY, D.E., 101, 166
 LIVETT, B.G. *see* ZHOU, X.-F., 100, 523
 LLUCH, S. *see* DE AGUILERA, E.M., 99, 439
 LODGE, D. *see* JONES, M.G., 101, 968
 LONG, S.K., SMITH, D.A.S., SIAREY, R.J. & EVANS, R.H. Effect of 6-cyano-2,3-dihydroxy-7-nitro-quinoloxaline (CNQX) on dorsal root-, NMDA-, kainate- and quisqualate-mediated depolarization of rat motoneurones *in vitro*, 100, 850
 LONGMORE, J. *see* NEWGREEN, D.T., 100, 605
 LOOTS, W. *see* DE CLERCK, F., 99, 631
 LÓPEZ, F. *see* ALFARO, M.J., 101, 958
 LOPEZ-BELMONTE, J. *see* WHITTLE, B.J.R., 99, 607
 LOPEZ-JARAMILLO, P., GONZALEZ, M.C., PALMER, R.M.J. & MONCADA, S. The crucial role of physiological Ca^{2+} concentrations in the production of endothelial nitric oxide and the control of vascular tone, 101, 489
 LORING, R.H. Agmatine acts as an antagonist of neuronal nicotinic receptors, 99, 207
 LÖTVALL, J.O., SKOOGH, B.-E., BARNES, P.J. & CHUNG, K.F. Effects of aerosolised substance P in lung resistance in guinea-pigs: a comparison between inhibition of neutral endopeptidase and angiotensin-converting enzyme, 100, 69
 LOUBATIÈRES-MARIANI, M.-M. *see* BOUHELAL, R., 100, 173
 LOURY, D.N. *see* MICHEL, A.D., 99, 560
 LU, X. *see* KOWALSKI, M.T., 99, 27
 LU, Y.M. & LIU, G.Q. The effects of (—)-daurisoline on Ca^{2+} influx in presynaptic nerve terminals, 101, 45
 LUCAS, M.L. *see* McEWAN, G.T.A., 101, 937
 LUDBROOK, J. *see* EVANS, R.G., 100, 421
 LUHESHI, G.N. & ZAR, M.A. Inhibitory effect of streptozotocin-induced diabetes on non-cholinergic motor transmission in rat detrusor and its prevention by sorbinil, 101, 411
 LUNDBERG, J.M. *see* MATRAN, R., 100, 535
 LÜSCHER, T.F. *see* DOHI, Y., 100, 889

M

MAAYANI, S. *see* CHRIST, G.J., 101, 375
 MACDERMOT, J. *see* KELLY, E., 99, 309
 —, *see* KELLY, E., 100, 223
 MACDONALD, A. *see* McLAUGHLIN, D.P., 101, 569
 MACDONALD, T.M. *see* BOATENG, Y.A., 101, 301
 MACHADO, C.A. *see* EGLEN, R.M., 99, 637
 MACKENZIE, I. *see* BEECH, D.J., 99, 374
 MACKINNON, A.C. *see* BROWN, C.M., 99, 481
 —, *see* BROWN, C.M., 99, 803
 MACLAGAN, J. *see* AAS, P., 100, 73
 MACLEAN, M.R. & HILEY, C.R. Effect of neuropeptide Y on cardiac output, its distribution, regional blood flow and organ vascular resistances in the pithed rat, 99, 340
 MACLEAN, M. & MCGRATH, J.C. Effects of pre-contraction with endothelin-1 on α_2 -adrenoceptor- and (endothelium-dependent) neuropeptide Y-mediated contractions in the isolated vascular bed of the rat tail, 101, 205
 MACLEOD, A.M. *see* FREEDMAN, S.B., 101, 575
 MACLEOD, K.M. *see* ABEBE, W., 101, 465
 —, *see* RAY, A., 99, 661
 MACNEIL, S. *see* BURTON, G.A., 99, 364
 MACRAE, I.M. *see* VILA, E., 100, 840
 MAGGI, C.A., PATACCINI, R., GIACHETTI, A. & MELI, A. Tachykinin receptors in the circular muscle of the guinea-pig ileum, 101, 996
 MAGGI, C.A., PATACCINI, R., GIULIANI, S., ROVERO, P.,

DION, S., REGOLI, D., GIACCHETTI, A. & MELI, A. Competitive antagonists discriminate between NK₂ tachykinin receptor subtypes, **100**, 588

MAGGI, C.A., PATACCINI, R., GIULIANI, S., TURINI, D., BARBANTI, G., REVERO, P. & MELI, A. Motor response of the human isolated small intestine and urinary bladder to porcine neuromedin U-8, **99**, 186

MAGGI, C.A. *see* BRUNNELLESCHI, S., **100**, 417

—, *see* MAPP, C.E., **100**, 886

—, *see* ROVERO, P., **101**, 232

—, *see* ZICHE, M., **100**, 11

MAGGIO, J.E. *see* GUARD, S., **99**, 767

MAGUIRE, J. *see* MURRAY, K.J., **99**, 612

MAGUIRE, J.J. *see* FREEDMAN, S.B., **101**, 575

MAIN, J.S. *see* FORSTER, C., **101**, 109

MALCANGIO, M. *see* GHELARDINI, C., **101**, 49

MALIK, K.U. *see* ADEAGBO, A.S.O., **100**, 427

MALLORGA, P. *see* SUGRUE, M.F., **99**, 59

MALMBERG-AIELLO, P. *see* GHELARDINI, C., **101**, 49

MALTIN, C.A. *see* PALMER, R.M., **101**, 835

MANARA, L. *see* BIANCHETTI, A., **100**, 831

MANN, J. *see* CARR, R.D., **100**, 90

MANOME, Y. *see* SAKURADA, T., **101**, 307

MÅNSSON, B., NILSSON, B-O. & EKSTRÖM, J. Effects of repeated infusions of substance P and vasoactive intestinal peptide on the weights of salivary glands subjected to atrophying influences in rats, **101**, 853

MANTELLI, L., AMERINI, S. & LEDDA, F. Different effects of prostaglandins on adrenergic neurotransmission in atrial and ventricular preparations, **99**, 717

MANTIONE, C.R. & RODRIGUEZ, R. A bradykinin (BK)₁ receptor antagonist blocks capsaicin-induced ear inflammation in mice, **99**, 516

MANZINI, S. & BALLATI, L. 2-Chloroadenosine induction of vagally-mediated and atropine-resistant bronchomotor responses in anaesthetized guinea-pigs, **100**, 251

MAPP, C.E., CHITANO, P., FABBRI, L.M., PATACCINI, R. & MAGGI, C.A. Pharmacological modulation of the contractile response to toluene diisocyanate in the rat isolated urinary bladder, **100**, 886

MARIANO, M. *see* ANTUNES, E., **101**, 986

MARINOTTI, O. *see* RIBEIRO, J.M.C., **101**, 932

MARKHAM, A. *see* BAYDOUN, A.R., **101**, 15

MARSDEN, C.A. *see* WRIGHT, I.K., **99**, 221

MARSHALL, F.H., BARNES, S., PINNOCK, R.D. & HUGHES, J. Characterization of cholecystokinin octapeptide-stimulated endogenous dopamine release from rat nucleus accumbens *in vitro*, **99**, 845

MARSHALL, G.R. *see* TRICKLEBANK, M.D., **101**, 753

MARSHALL, R.J. *see* SHAHID, M., **100**, 735

MARTIN, M.I. *see* ALFARO, M.J., **101**, 958

MARTINS, M.A. *see* HENRIQUES, M.G.M.O., **99**, 164

MARTORANA, M.G. *see* SHAHID, M., **100**, 735

MARTYN, J.A.J. *see* TOMERA, J.F., **101**, 263

MASHIBA, H. *see* HASEGAWA, J., **99**, 815

MASUDA, Y. *see* MOLLACE, V., **100**, 547

MASUZAWA, K., MATSUDA, T. & ASANO, M. Evidence that pinacidil may promote the opening of ATP-sensitive K⁺ channels yet inhibit the opening of Ca²⁺-activated K⁺-contracted canine mesenteric artery, **100**, 143

MATHIE, R.T. & ALEXANDER, B. The role of adenosine in the hyperaemic response of the hepatic artery to portal vein occlusion (the 'buffer response'), **100**, 626

MATHISON, R., RIMMER, C., DAVISON, J.S., WALLACE, J.L. & BEFUS, A.D. Alterations in regional blood flow in rats following sesnitization to the nematode *Nippostrongylus brasiliensis*: effects of PAF antagonists, **101**, 93

MATRAN, R., ALVING, K. & LUNDBERG, J.M. Cigarette smoke, nicotine and capsaicin aerosol-induced vasodilatation in pig respiratory mucosa, **100**, 535

MATSUDA, T. *see* MASUZAWA, K., **100**, 143

MATSUGI, T. *see* MORITOKI, H., **100**, 569

MATSUZAWA, K. *see* KIHIRA, M., **100**, 353

MATU, K. *see* SMITH, G.W., **100**, 295

MAY, G.R. *see* THIEMERMANN, C., **99**, 303

MAZOIT, J.X., KANTELIP, J-P., ORHANT, E.E. & TALMANT, J-M. Myocardial uptake of lignocaine, pharmacokinetics and pharmacodynamics in the isolated perfused heart of the rabbit, **101**, 843

MCARDLE, J.J. *see* GAGE, P.W., **100**, 467

MCCULLOCH, J. *see* EDVINSSON, L., **100**, 311

McDERMOTT, A.M., WILKIN, G.P. & DICKINSON, S.L. Pharmacological and biochemical comparison of thyrotropin releasing hormone (TRH) and di-methyl proline-TRH on pituitary GH₃ cells, **101**, 615

MC EWAN, G.T.A. & LUCAS, M.L. The effect of *E. coli* STa enterotoxin on the absorption of weakly dissociable drugs from rat proximal jejunum *in vivo*, **101**, 937

MC EWAN, J. *see* CROSSMAN, D.C., **99**, 71

McGIFF, J.C. *see* QUILLEY, J., **100**, 336

McGIVERN, J. & SCHOLFIELD, C.N. General anaesthetics and field currents in unclamped, unmyelinated axons of rat olfactory cortex, **101**, 217

McGRATH, J.C., MONAGHAN, S., TEMPLETON, A.G.B. & WILSON, V.G. Effects of basal and acetylcholine-induced release of endothelium-derived relaxing factor on contraction to α -adrenoceptor agonists in a rabbit artery and corresponding veins, **99**, 77

McGRATH, J.C. *see* BROWN, C.M., **99**, 481

—, *see* BROWN, C.M., **99**, 803

—, *see* DAINTY, I.A., **100**, 241

—, *see* DAINTY, I.A., **100**, 767

—, *see* DALY, C.J., **99**, 253

—, *see* MACLEAN, M.R., **101**, 205

McHARG, A.D. *see* NEWGREEN, D.T., **100**, 605

McKNIGHT, A.T. *see* FREEDMAN, S.B., **101**, 575

MC LAUGHLIN, D.P. & MACDONALD, A. Evidence for the existence of 'atypical' β -adrenoceptors (β_3 -adrenoceptors) mediating relaxation in the rat distal colon *in vitro*, **101**, 569

MCLEAN, W.G. *see* PEKINER, C., **101**, 978

MC MILLAN, D.N. *see* PALMER, R.M., **101**, 835

MC MILLAN, R.M., GIRODEAU, J-M. & FOSTER, S.J. Selective chiral inhibitors of 5-lipoxygenase with anti-inflammatory activity, **101**, 501

MC MILLAN, R.M. *see* FOSTER, S.J., **99**, 113

MC NEILL, J.R. *see* WANG, H., **100**, 5

MC PHERSON, G.A. & ANGUS, J.A. Characterization of responses to cromakalim and pinacidil in smooth and cardiac muscle by use of selective antagonists, **100**, 201

MC QUEEN, D.S. *see* BIRRELL, G.J., **101**, 715

MEECHAM, K.G. *see* HUNTER, J.C., **101**, 183

MEINARDI, H. *see* DINGEMANSE, J., **99**, 53

MELI, A. *see* MAGGI, C.A., **99**, 186

—, *see* MAGGI, C.A., **100**, 588

—, *see* MAGGI, C.A., **100**, 996

MELMAN, A. *see* CHRIST, G.J., **101**, 375

MÉNARD, L., PILOTE, S., NACCACHE, P.H., LAVIOLETTE, M. & BORGÉAT, P. Inhibitory effects of MK-886 on arachidonic acid metabolism in human phagocytes, **100**, 15

MENDELSON, F.A.O. *see* FABRIS, B., **100**, 651

MERCURI, N.B., CALABRESI, P. & BERNARDI, G. Responses of rat substantia nigra compacta neurones to L-DOPA, **100**, 257

MERCURI, N.B. *see* LACEY, M.G., **99**, 731

MEURS, H. *see* REMIE, R., **99**, 223

—, *see* ROFFEL, A.F., **99**, 293

MEYER, R.B.R. & HOPE, W. Evidence that A₂-purinoceptors are involved in endothelium-dependent relaxation of the rat thoracic aorta, **100**, 576

MICHEL, A.D., LOURY, D.N. & WHITING, R.L. Assessment of imiloxan as a selective α_{2B} -adrenoceptor antagonist, **99**, 560

MICHEL, A.D. *see* EGLEN, R.M., **99**, 637

MICHEL, M.C. *see* MOTOMURA, S., **101**, 363

MICHELETTI, R., GIUDICI, L., TURCONI, M. & DONETTI, A. 4-DAMP analogues reveal heterogeneity of M₁ muscarinic receptors, **100**, 395

MICHELETTI, R., SCHIAVONE, A., CEREDA, E. & DONETTI, A. Hexocyclium derivatives with a high selectivity for smooth muscle muscarinic receptors, **100**, 150

MIDDLEMISS, D.N. *see* MOSER, P.C., **99**, 343

MILAVEC-KRIZMAN, M. *see* KING, A.D., **100**, 483

MILLER, D.J. & STEELE, D.S. The 'calcium sensitising' effects of ORG30029 in saponin- or Triton-skinned rat cardiac muscle, **100**, 843

MILLER, D.J. *see* DALY, C.J., **99**, 253

MILLER, K.W. *see* DODSON, B.A., **101**, 710

MILLER, L.G. *see* GALPERN, W.R., **101**, 839

MILLER, R.C. *see* HILEY, C.R., **101**, 319

MILLER, R.J. *see* BLEAKMAN, D., **101**, 423

MILTON, A.S. *see* DAVIDSON, J., **100**, 542

MINSHALL, E. *see* PIPER, I., **101**, 901

MIR, A.K. *see* BOUHELAL, R., **100**, 173

MIR, A.K. *see* MOSER, P.C., **99**, 343

MIRAS-PORTUGAL, M.T. *see* CASTRO, E., 100, 360

MIRONNEAU, C. *see* MIRONNEAU, J., 101, 6

MIRONNEAU, J., SAYET, I., RAKOTOARISOA, L., DACQUET, C. & MIRONNEAU, C. Interaction of spironolactone with (+)-[³H]-isradipine and (-)-[³H]-desmethoxyverapamil binding sites in vascular smooth muscle, 101, 6

MIRAZADEH, S. *see* GIBSON, A., 99, 602

MITCHELL, J.A. *see* HECKER, M., 101, 237

MITCHELL, P.D. *see* SMITH, G.W., 100, 295

MITCHELL, R. *see* HOPE, P.J., 101, 477

MIZUKAMI, M. *see* KONDO, N., 101, 789

MOFFAT, M.P. *see* KARMAZYN, M., 100, 826

MOLGÓ, J., COMELLA, J.X., 8 LEGRAND, A.M. Ciguatoxin enhances quantal transmitter release from frog motor nerve terminals, 99, 695

MOLLACE, V., MASUDA, Y., PELAGGI, T. & NISTICÒ, G. The effects of phosphatidylserine on the decreased cardiovascular response to clonidine microinfused into the nucleus tractus solitarii of old rats, 100, 547

MONAGHAN, S. *see* McGRATH, J.C., 99, 77

MONCADA, S. *see* BOULANGER, C., 101, 152

—, S. *see* GARDINER, S.M., 101, 10

—, *see* LOPEZ-JARAMILLO, P., 101, 489

—, *see* PERSSON, M.G., 100, 463

—, *see* RADOMSKI, M.W., 101, 325

—, *see* REES, D.D., 101, 746

—, *see* WHITTLE, B.J.R., 99, 607

MONTASTRUC, J-L. *see* ESTAN, L., 101, 329

—, *see* GALITZKY, J., 100, 862

—, *see* RASCOL, O., 100, 471

MONTASTRUC, P. *see* RASCOL, O., 100, 471

MONTGOMERY, W.W. *see* EGLEN, R.M., 99, 637

MOORE, P.K., AL-SWAYEH, O.A., CHONG, N.W.S., EVANS, R.A. & GIBSON, A., L-N^G-nitro-arginine (L-NOARG), a novel L-arginine-reversible inhibitor of endothelium-dependent vasodilation *in vitro*, 99, 408

MOORE, P.K., AL-SWAYEH, O.A. & EVANS, R. Rabbit brain contains an endogenous inhibitor of endothelium-dependent relaxation, 101, 865

MOORE, P.K. *see* GIBSON, A., 99, 602

MOORES, K. *see* MURRAY, K.J., 99, 612

MORALI, F. *see* INVERNIZZI, R., 100, 774

MORBIDELLI, L. *see* ZICHE, M., 100, 11

MORCILLO, E.J. *see* IRIARTE, C.F., 101, 257

MORGAN, J.P. *see* PERREAU, C.L., 101, 679

MORGAN, R.M. *see* MAYDOUN, A.R., 101, 15

MORITOKI, H., MATSUGI, T., TAKASE, H., UEDA, H. & TANIOKA, A. Evidence for the involvement of cyclic GMP in adenosine-induced, age-dependent, vasodilatation, 100, 569

MORITOKI, H., TAKASE, H. & TANIOKA, A. Dual effects of capsaicin on responses of the rabbit ear artery to field stimulation, 99, 152

MORLEY, J. *see* SANJAR, S., 99, 267

—, *see* SANJAR, S., 99, 679

—, J. *see* SANJAR, S., 100, 399

MORONEY, M.A., FORDER, R.A., CAREY, F. & HOULT, J.R.S. Differential regulation of 5-lipoxygenase and cyclo-oxygenase pathways of arachidonate metabolism in rat peritoneal leukocytes, 101, 128

MORONNEAU, J. *see* SAVINEAU, J-P., 99, 261

MORRISON, K.J. & POLLOCK, D. Impairment of relaxations to acetylcholine and nitric oxide by a phorbol ester in rat isolated aorta, 101, 432

MORTENSEN, F.V. *see* NIELSEN, H., 99, 31

MORTON, I.K.M. *see* FOX, A.J., 101, 553

MOSKOWITZ, M.A. *see* BUZZI, M.G., 99, 202

MOSER, P.C., TRICKLEBANK, M.D., MIDDLEMISS, D.N., MIR, A.K., HIBERT, M.F. & FOZARD, J.R. Characterization of MDL 73005EF as a 5-HT_{1A} selective ligand and its effects in animal models of anxiety: comparison with buspirone, 8-OH-DPAT and diazepam, 99, 343

MOSS, H.E. & SANGER, G.J. The effects of granisetron, ICS205-930 and ondansetron on the visceral pain reflex induced by duodenal distension, 100, 497

MOTOMURA, S., DEIGHTON, N.M., ZERKOWSKI, H-R., DOETSCH, N., MICHEL, M.C. & BRODDE, O-E. Chronic β -adrenoceptor antagonist treatment sensitizes β_2 -adrenoceptors, but desensitizes M₂-muscarinic receptors in the human right atrium, 101, 363

MOUSA, S.A., BROWN, R., CHAN, Y., HSIEH, J. & SMITH, R.D. Evaluation of the effect of azapropazone on neutrophil migration in anaesthetized swine using a multichamber blister suction technique, 99, 233

MOUSA, S.A., BROWN, R., THOOLEN, M.J.M. & SMITH, R.D. Evaluation of the effect of azapropazone on neutrophil migration in regional myocardial ischaemia/reperfusion injury in rabbits, 100, 379

MUDUNKOTUWA, N.T. *see* FREEDMAN, S.B., 101, 575

MUID, R.E. *see* TWOMEY, B., 100, 819

MUIR, T.C. *see* BAIRD, A.A., 100, 329

MULDER, P. *see* RICHER, C., 100, 557

MULLANE, K.M. *see* SESSA, W.C., 99, 553

MÜLLER, O. *see* PIROVINO, M., 99, 35

MÜLLER-BECKMANN, B. *see* DORSZEWSKI, A., 101, 686

MÜLLER-SCHWEINITZER, E. & OLEA-BAZA, I. Pharmacological evidence for the existence of a local renin-angiotensin system in porcine interlobar renal arteries, 101, 89

MÜLLER-SCHWEINITZER, E. *see* KING, A.D., 100, 483

MULVANY, M.J. *see* NIELSEN, H., 99, 31

MURAKI, K., IMAIZUMI, Y., KOJIMA, T., KAWAI, T. & WATANABE, M. Effects of tetraethylammonium and 4-aminopyridine on outward currents and excitability in canine tracheal smooth muscle cells, 100, 507

MURAMATSU, I., KIGOSHI, S. & OSHITA, M. Two distinct α_1 -adrenoceptor subtypes involved in noradrenaline contraction of the rabbit thoracic aorta, 101, 662

MURAMATSU, I., OHMURA, T., KIGOSHI, S., HASHIMOTO, S. & OSHITA, M. Pharmacological subclassification of α_1 -adrenoceptors in vascular smooth muscle, 99, 197

MURAMATSU, I. *see* OHMURA, T., 99, 587

—, *see* OHMURA, T., 100, 27

MURRAY, K.J., ENGLAND, P.J., HALLAM, T.J., MAGUIRE, J., MOORES, K., REEVES, M.L., SIMPSON, A.W.M. & RINK, T.J. The effects of siguazodan, a selective phosphodiesterase inhibitor, on human platelet function, 99, 612

MURRAY, K.J. *see* KAUMANN, A.J., 100, 879

MUTEKI, T. *see* TOKIMASA, T., 101, 190

MUTSCHLER, E. *see* FEIFEL, R., 99, 445

MYERS, A.K., ROBEY, J.W. & PRICE, R.M. Relationships between tumour necrosis factor, eicosanoids and platelet-activating factor as mediators of endotoxin-induced shock in mice, 99, 499

N

NACCACHE, P.H. *see* MÉNARD, L., 100, 15

NAHORSKI, S.R. *see* CHILVERS, E.R., 99, 297

NAKAMURA, M. *see* ABE, S., 101, 545

—, *see* HIRANO, K., 101, 273

NAKAMURA, S. *see* HORIO, S., 101, 587

NAKANO, M. *see* YAMADA, K., 99, 384

NAKASHIMA, M., LI, Y., SEKI, N. & KURIYAMA, H. Pinacidil inhibits neuromuscular transmission indirectly in the guinea-pig and rabbit mesenteric arteries, 101, 581

NAKASHIMA, M. *see* ITAYA, T., 99, 572

NAKAYA, H. *see* TOHSE, N., 99, 437

NAKAZAWA, K., FUJIMORI, K., TAKANAKA, A. & INOUE, K. Reversible and selective antagonism by suramin of ATP-activated inward current in PC12 phaeochromocytoma cells, 101, 224

NAKAZATO, Y. *see* TERAOKA, H., 101, 67

NALINE, E. *see* ADVENIER, C., 100, 168

NANASI, P.P. *see* LATHROP, D.A., 99, 119

NANOFF, C., FREISSLER, M., TUISL, E. & SCHÜTZ, W. P₂-, but not P₁-purinoceptors mediate formation of 1,4,5-inositol trisphosphate and its metabolites via a pertussis toxin-insensitive pathway in the rat renal cortex, 100, 63

NAPIER, F.E., SHEARER, M.A. & TEMPLE, D.M. Nedocromil sodium inhibits antigen-induced contraction of human lung parenchymal and bronchial strips, and the release of sulphidopeptide-leukotrienes and histamine from human lung fragments, 100, 247

NAVARATNAM, S., CHAU, T., AGBANYO, M., BOSE, D. & KHATTER, J.C. Positive inotropic effect of porcine left ventricular extract on canine ventricular muscle, 101, 370

NAYA, I. *see* SMITH, G.W., 100, 295

NAYLOR, A. *see* HAYES, A.G., 101, 944

NEAL, M.J. & SHAH, M.A. Development of tolerance to the effects of vigabatrin (γ -vinyl-GABA) on GABA release from rat cerebral cortex, spinal cord and retina, 100, 324

NEAL, M.J. *see* HITCHCOTT, P.K., 99, 11

NEGISHI, M. *see* ITO, S., 99, 13

NELLIS, P. *see* CRISCIONE, L., 100, 31

NERME, V. *see* WAHLUND, G., 99, 592
 NEWBERRY, N.R. *see* FREEDMAN, S.B., 101, 575
 NEWGREEN, D.T., BRAY, K.M., MCHARG, A.D., WESTON, A.H., DUTY, S., BROWN, B.S., KAY, P.B., EDWARDS, G., LONGMORE, J. & SOUTHERTON, J.S. The action of diazoxide and minoxidil sulphate on rat blood vessels: a comparison with cromakalim, 100, 605
 NEWMAN, C.M., WARREN, J.B., TAYLOR, G.W., BOOBIS, A.R. & DAVIES, D.S. Rapid tolerance to the hypotensive effects of glyceryl trinitrate in the rat: prevention by N-acetyl-L- but not N-acetyl-D-cysteine, 99, 825
 NEWTON, J.F. *see* SMITH III, E.F., 100, 195
 NEY, U. *see* GARDINER, S.M., 99, 830
 NICOL, A.K. *see* CARR, R.D., 100, 83
 NICHOLLS, J., HOURANI, S.M.O. & KITCHEN, I. The ontogeny of purinoceptors in rat urinary bladder and duodenum, 100, 874
 NICHOLS, A.J., KOSTER, P.F. & OHLSTEIN, E.H. The effect of diltiazem on the coronary haemodynamic and cardiac functional effects produced by intracoronary administration of endothelin-1 in the anaesthetized dog, 99, 597
 NICHOLSON, C.D. *see* CHALLISS, R.A.J., 99, 47
 NIELSEN, H., MORTENSEN, F.V. & MULVANY, M.J. Responses to noradrenaline in human subcutaneous resistance arteries are mediated by both α_1 - and α_2 -adrenoceptors, 99, 31
 NILSSON, B-O. *see* MÄNSSON, B., 101, 853
 NISHIMURA, M., TSUBAKI, K., YAGASAKI, O. & ITO, K. Ryanodine facilitates calcium-dependent release of transmitter at mouse neuromuscular junctions, 100, 114
 NISHIO, M. *see* OHMURA, T., 99, 587
 —, *see* OHMURA, T., 100, 27
 NISHIYE, E. *see* KATSUYAMA, H., 100, 41
 NISTICÒ, G. *see* BAGETTA, G., 101, 655
 —, *see* BAGETTA, G., 101, 776
 —, *see* MOLLACE, V., 100, 547
 NOBBS, P. *see* KELLY, E., 99, 309
 —, *see* KELLY, E., 100, 223
 NOBLE, B.S. *see* PALMER, R.M., 101, 835
 NOGUCHI, N. *see* HASEGAWA, J., 99, 815
 NOLAN, T.E. *see* SUGRUE, M.F., 99, 59
 NOLLY, H. *see* FASCIOLI, J.C., 101, 344
 NORMAN, B.J. & LEATHARD, H.L. Evidence that an atypical β -adrenoceptor mediates the inhibition of spontaneous rhythmical contractions of rabbit isolated jejunum induced by ritodrine and salbutamol, 101, 27
 NORTH, R.A. *see* LACEY, M.G., 99, 731
 —, *see* UCHIMURA, N., 99, 736
 NORTHOVER, B.J. Continuous fluorimetric assessment of the changes in cytoplasmic calcium concentration during exposure of rat isolated myocardium to conditions of simulated ischaemia, 100, 477
 NOVAS, M.L. *see* TANG, R., 99, 548
 NUNES, J.P. *see* GUIMARAES, S., 101, 387
 NYBORG, N.C.B. Action of noradrenaline on isolated proximal and distal coronary arteries of rat: selective release of endothelium-derived relaxing factor in proximal arteries, 100, 552

O

O'CONNOR, J.J., ROWAN, K.J. & ANWYL, R. Actions of 5-HT₁ ligands on excitatory synaptic transmission in the hippocampus of alert rats, 101, 171
 O'CONNOR, S.E., WOOD, B.E. & LEFF, P. Characterization of P_{2x}-receptors in rabbit isolated ear artery, 101, 640
 O'CONNOR, S.E. *see* CARR, R.D., 100, 83
 —, *see* CARR, R.D., 100, 90
 —, *see* LEFF, P., 101, 645
 OGLE, C.W. *see* LEUNG, C.M.K., 99, 247
 OHASHI, M. *see* ETOH, S., 100, 564
 OHGA, A. *see* OHTA, T., 100, 231
 —, *see* TERAOKA, H., 101, 67
 OHHASHI, T. *see* SHIRAI, K., 100, 200
 OHLSTEIN, E.H. *see* NICHOLS, A.J., 99, 597
 OHMURA, T., NISHIO, M., KIGOSHI, S. & MURAMATSU, I. Electrophysiological and mechanical effects of calcitonin gene-related peptide on guinea-pig atria, 100, 27
 —, Somatostatin decreases the calcium inward current in guinea-pig atria, 99, 587
 OHMURA, T. *see* MURAMATSU, I., 99, 197
 OHTA, T., ITO, S. & OHGA, A. Co-release of PHI and VIP in dog stomach by peripheral and central vagal stimulation, 100, 231
 OKAMOTO, Y. *see* HISAYAMA, T., 100, 677

OKUDA, E. *see*, ITO, S., 99, 13
 OKWUSABA, F.K., OTUBU, J.A.M. & UDOH, F.V. Mode of inhibitory actions of acute and chronic chloroquine administration on the electrically stimulated mouse diaphragm *in vitro*, 101, 133
 OLEA-BAZA, I. *see* MÜLLER-SCHWEINITZER, E., 101, 89
 OLES, R.J. *see* SINGH, L., 99, 285
 OLLEY, J.E. *see* RECHTMAN, M.P., 101, 269
 OLPE, H.-R. *see* FAGG, G.E., 99, 791
 OLUYOMI, A.O. *see* HART, S.L., 99, 243
 OMINI, C. *see* DEL MONTE, M., 99, 582
 OMORI, K. *see* OTANI, H., 100, 207
 ONG, B.Y. *see* CHANDLER, C.J., 101, 227
 ONG, L.J. *see* KERR, D.I.B., 99, 422
 ORHANT, E.E. *see* MAZOIT, J.X., 101, 843
 OSHITA, M. *see* MURAMATSU, I., 99, 197
 —, *see* MURAMATSU, I., 101, 662
 OTANI, H., OTANI, H., URIU, T., HARA, M., INOUE, M., OMORI, K., CRAGOE, JR. & INAGAKI, C. Effects of inhibitors of protein kinase C and Na⁺/H⁺ exchange on α_1 -adrenoceptor-mediated inotropic responses in the rat left ventricular papillary muscle, 100, 207
 OTANI, H. *see* OTANI, H., 100, 207
 OZAWA, T. *see* SANO, T., 99, 577
 OTSUKA, M. *see* YANAGISAWA, M., 100, 711
 OTUBU, J.A.M. *see* OKWUSABA, F.K., 101, 133
 OWEN, P.J. *see* JONES, J.A., 101, 521

P

PACINI, M. *see* ZICHE, M., 100, 11
 PACIOREK, P.M., COWLICK, I.S., PERKINS, R.S., TAYLOR, J.C., WILKINSON, G.F. & WATERFALL, J.F. Evaluation of the bronchodilator properties of Ro 31-6930, a novel potassium channel opener, in the guinea-pig, 100, 289
 PAGE, C.P. *see* COYLE, A.J., 101, 31
 —, *see* THIEMERMANN, C., 99, 303
 PALMER, R.M., DELDAY, M.I., McMILLAN, D.N., NOBLE, B.S., BAIN, P. & MALTIN, C.A. Effects of the cyclo-oxygenase inhibitor, fenbufen, on clenbuterol-induced hypertrophy of cardiac and skeletal muscle of rats, 101, 835
 PALMER, R.M.J. *see* GARDINER, S.M., 101, 10
 —, *see* LOPEZ-JARAMILLO, P., 101, 489
 —, *see* RADOMSKI, M.W., 101, 325
 —, *see* REES, D.D., 101, 746
 PALMERO, M. *see* BALLESTA, J.J., 101, 21
 PANG, C.C.Y. *see* TABRIZCHI, R., 101, 358
 PAREKH, A.B. *see* FUJII, K., 99, 779
 —, *see* SYED, M.M., 101, 809
 PARRATT, J.R. *see* GUC, M.O., 101, 913
 PASCUAL, R. *see* IRIARTE, C.F., 101, 257
 PATACHINI, R. *see* MAGGI, C.A., 99, 186
 —, *see* MAGGI, C.A., 100, 588
 —, *see* MAGGI, C.A., 101, 996
 —, *see* MAPP, C.E., 100, 886
 —, *see*, ROVERO, P., 101, 232
 PATCH, T.L. *see* DOLIN, S.J., 101, 691
 PATEL, S. *see* FREEDMAN, S.B., 101, 575
 PATMORE, L., DUNCAN, G.P., CLARKE, B., ANDERSON, A.J., GREENHOUSE, R. & PFISTER, J.R. RS30026: a potent and effective calcium channel agonist, 99, 687
 PÄTSI, T. *see* ALARANTA, S., 101, 472
 PAYNE, A.N. *see* HAMID-BLOOMFIELD, S., 100, 761
 PEARSON, J.D. *see* CROSSMAN, D.C., 99, 71
 PEKINER, C. & MCLEAN, W.G. Impaired induction of nerve ornithine decarboxylase activity in the streptozotocin-diabetic rat is prevented by the aldose reductase inhibitor ponalrestat, 101, 978
 PELAGGI, T. *see* MOLLACE, V., 100, 547
 PELCKMANS, P.A. *see* BOECKXSTAENS, G.E., 101, 460
 PELTON, J.T. *see* HILEY, C.R., 101, 319
 PEMBERTON, K.E. *see* ROWAN, E.G., 100, 301
 PEPEU, G. *see* PUGLIESE, A.M., 99, 189
 PEPKE-ZABA, J. *see* DINH XUAN, A.T., 99, 9
 PERKINS, M.N. *see* JAMES, I.F., 99, 503
 PERKINS, R.S. *see* PACIOREK, P.M., 100, 289
 PERREAU, C.L., HAGUE, N.L., RANSIL, B.J. & MORGAN, J.P. The effects of cocaine on intracellular Ca²⁺ handling and myofilament Ca²⁺ responsiveness of ferret ventricular myocardium, 101, 679
 PERSSON, M.G., GUSTAFSSON, L.E., WIKLUND, N.P., HADQVIST, P. & MONCADA, S. Endogenous nitric oxide as a modu-

lator of rabbit skeletal muscle microcirculation *in vivo*, 100, 463

PESSAYRE, D. *see* PIROVINO, M., 99, 35

PETERSEN, O.H. *see* DUNNE, M.J., 99, 169

PETRIE, J.C. *see* BOATENG, Y.A., 101, 301

PETROVIC, A.A. *see* HAMID-BLOOMFIELD, S., 100, 761

PETTIPHER, E.R. *see* CRUWYS, S.C., 100, 631

PFISTER, J.R. *see* PATMORE, L., 99, 687

PILOTE, S. *see* MÉNARD, L., 100, 15

PILSUDSKI, R., ROUGIER, O. & TOURNEUR, Y. Action of cro-makalim on potassium membrane conductance in isolated heart myocytes of frog, 100, 581

PINKER, S.R. *see* KITCHEN, I., 100, 685

PINNOCK, R.D. *see* MARSHALL, F.H., 99, 845

PIPER, I., MINSHALL, E., DOWNING, S.J., HOLLINGSWORTH, M. & SADRAEI, H. Effects of several potassium channel openers and glibenclamide on the uterus of the rat, 101, 901

PIPER, P.J. *see* BRAMLEY, A.M., 99, 762

PIRES, J.G.P. *see* BOGLE, R.G., 100, 757

PIROVINO, M., HONEGGER, U., MÜLLER, O., ZYSET, TH., KÜPFER, A., TINEL, M. & PESSAYRE, D. Differences in hepatic drug accumulation and enzyme induction after chronic amiodarone feeding of two rat strains: role of the hydroxylator phenotype?, 99, 35

PLANE, F. *see* JACOBS, M., 100, 21

PLANT, T.D. & HENQUIN, J.C. Phentolamine and yohimbine inhibit ATP-sensitive K⁺ channels in mouse pancreatic β -cells, 101, 115

PLANTE, G.E. *see* SIROIS, M.G., 101, 896

POLLOCK, D. *see* MORRISON, K.J., 101, 432

PORTET, C. *see* FAGG, G.E., 99, 791

POSTEL-WESTRA, I. *see* DINGEMANSE, J., 99, 53

POTTER, B.V.L. *see* CHILVERS, E.R., 99, 297

POTVIN, W. & VARMA, D.R. Refractoriness of the gravid rat uterus to tocolytic and biochemical effects of atrial natriuretic peptide, 100, 341

POZZA, M.F. *see* FAGG, G.E., 99, 791

POZZI, L. *see* INVERNIZZI, R., 100, 774

PRAGER, R.H. *see* KERR, D.I.B., 99, 422

PRETOLANI, M., RANDON, J. & VARGAFTIG, B.B. Antigen induces leucopenia in non-immunised guinea-pigs injected with platelets from actively sensitized animals, 100, 185

PREUSS, J.M. *see* HENRY, P.J., 100, 786

PRICE, R.M. *see* MYERS, A.K., 99, 499

PRICE, S. *see* HIDLICKÁ, O., 99, 786

PRINCE, D.A. *see* COULTER, D.A., 100, 800

—, *see* COULTER, D.A., 100, 807

PRUNEAU, D. & ANGUS, J.A. ω -Conotoxin GVIA is a potent inhibitor of sympathetic neurogenic responses in rat small mesenteric arteries, 100, 180

PUGLIESE, A.M., CORRADETTI, R., BALLERINI, L. & PAPEU, G. Effect of the nootropic drug oxiracetam on field potentials of rat hippocampal slices, 99, 189

PUIL, E. & EL-BEHEIRY, H. Anaesthetic suppression of transmitter actions in neocortex, 101, 61

PUIL, E. *see* EL-BEHEIRY, H., 101, 1006

PUYBASSET, L. *see* ADVENIER, C., 100, 168

Q

QUILLEY, J. & MCGIFF, J.C. Renal vascular responsiveness to arachidonic acid in experimental diabetes, 100, 336

QUINN, N.E. *see* CATRAVAS, J.D., 101, 121

R

RABBANI, M. *see* DOLIN, S.J., 101, 691

RABERGER, G. *see* KRUMPL, G., 100, 855

RADOMSKI, M.W., PALMER, R.M.J. & MONCADA, S. Characterization of the L-arginine:nitric oxide pathway in human platelets, 101, 325

RADZISZEWSKI, W. *see* SALVEMINI, D., 101, 991

RAKOTOARISOA, L. *see* MIRONNEAU, J., 101, 6

RAMAGE, A.G. *see* BOGLE, R.G., 100, 757

RAMOS, E.G. *see* ESPLUGUES, J.V., 100, 491

RAMPART, M. *see* BOECKXSTAENS, G.E., 101, 460

RAND, M.J. *see* DE LUCA, A., 101, 437

RANDON, J. *see* PRETOLANI, M., 100, 185

RANDALL, M.D., EDWARDS, D.H. & GRIFFITH, T.M. Activities of endothelin-1 in the vascular network of the rabbit ear: a microangiographic study, 101, 781

RANG, H.P. *see* DUNN, P.M., 100, 656

RANSIL, B.J. *see* PERREAULT, C.L., 101, 679

RASCOL, O., MONTASTRUC, J.-L., GAUQUELIN, G., TRAN, M.-A., GEELEN, G., GHARIB, C. & MONTASTRUC, P. Cardiovascular effects of central injection of acetylcholine in anaesthetized dogs: a role for vasopressin release, 100, 471

RAUD, J. Vasodilatation and inhibition of mediator release represent two distinct mechanisms for prostaglandin modulation of acute mast cell-dependent inflammation, 99, 449

RAY, A. & MACLEOD, K.M. Adrenergic-cholinergic interactions in left atria: a study using K⁺ channel agonists, antagonist and pertussis toxin, 99, 661

REAVILL, C. & STOLERMAN, L.P. Locomotor activity in rats after administration of nicotinic agonists intracerebrally, 99, 273

RECHTMAN, M.P., BOURA, A.L.A., KING, R.G., OLLEY, J.E. & SCHILLER, P.W. Effects of morphine, H-Tyr-D-Arg-Phe-Lys-NH₂ (DALDA) and B-HT920 on non-cholinergic nerve-mediated bronchoconstriction in pithed guinea-pigs, 101, 269

REES, D.C. *see* HUNTER, J.C., 101, 183

REES, D.D., PALMER, R.M.J., SCHULZ, R., HODSON, H.F. & MONCADA, S. Characterization of three inhibitors of endothelial nitric oxide synthase *in vitro* and *in vivo*, 101, 746

REEVES, M.L. *see* MURRAY, K.J., 99, 612

REGOLI, D. *see* MAGGI, C.A., 100, 588

—, *see* RHALEB, N.-E., 99, 445

REID, J.J. *see* DE LUCA, A., 101, 437

REID, J.L. *see* JOHN, G.W., 100, 699

REIG, J.A. *see* BALLESTA, J.J., 101, 21

REISER, G. Endothelin and a Ca²⁺ inophore raise cyclic GMP levels of a neuronal cell line via formation of nitric oxide, 101, 722

REKLING, J.C., JAHNSEN, H. & LAURSEN, A.M. The effect of two lipophilic γ -aminobutyric acid uptake blockers in CA1 of the rat hippocampal slice, 99, 103

REMACLE-VOLON, G. *see* DAMAS, J., 101, 418

REMIE, R., COPPES, R.P., MEURS, H., ROFFEL, A.F. & ZAAGSMA, J. Characterization of presynaptic vascular muscarinic receptors inhibiting endogenous noradrenaline overflow in the portal vein of the freely moving rat, 99, 223

REYNOLDS, I.J., RUSH, E.A. & AIZENMAN, E. Reduction of NMDA receptors with dithiothreitol increases [³H]-MK-801 binding and NMDA-induced Ca²⁺ fluxes, 101, 178

RHALEB, N.-E., DRAPEAU, G., DION, S., JUKIC, D., ROUSSI, N. & REGOLI, D. Structure-activity studies on bradykinin and related peptides: agonists, 99, 445

RIBEIRO, J.A. *see* SEBASTIÃO, A.M., 100, 55

—, *see* SEBASTIÃO, A.M., 101, 453

RIBEIRO, J.M.C., MARINOTTI, O. & GONZALES, R. A salivary vasodilator in the blood-sucking bug, *Rhodnius prolixus*, 101, 932

RICHARDS, M.H. Rat hippocampal muscarinic autoreceptors are similar to the M₂ (cardiac) subtype: comparison with hippocampal M₁, atrial M₂ and ileal M₃ receptors, 99, 753

RICHER, C., MULDER, P., DOUSSAU, M.-P., GAUTIER, P. & GIUDICELLI, J.-F. Systemic and regional haemodynamic interactions between K⁺ channel openers and the sympathetic nervous system in the pithed SHR, 100, 557

RIGBY, P.J. *see* HENRY, P.J., 99, 136

—, *see* HENRY, P.J., 100, 786

RIMMER, C. *see* MATHISON, R., 101, 93

RINKER, B. *see* CRISCIONE, L., 100, 31

RINK, T.J. *see* MURRAY, K.J., 99, 612

RISPOLI, V. *see* BAGETTA, G., 101, 655

ROBERTS, J. *see* TUMER, N., 99, 87

ROBEY, J.W. *see* MYERS, A.K., 99, 499

ROBINSON, D.H. *see* CARR, R.D., 100, 90

ROBINSON, J.P. & KENDALL, D.A. Niguldipine discriminates between α_1 -adrenoceptor-mediated second messenger responses in rat cerebral cortex slices, 100, 3

ROBSON, A. *see* CARR, R.D., 100, 83

RODRIGUEZ, R. *see* MANTIONE, C.R., 99, 516

RODRIGUEZ, R.E. *see* TRAYNOR, J.R., 100, 319

ROFFEL, A.F., MEURS, H., ELZINGA, C.R.S. & ZAAGSMA, J. Characterization of the muscarinic receptor subtype involved in phosphoinositide metabolism in bovine tracheal smooth muscle, 99, 293

ROFFEL, A.F. *see* REMIE, R., 99, 223

ROGERS, D.F., DIJK, S. & BARNES, P.J. Bradykinin-induced plasma exudation in guinea-pig airways: involvement of platelet activating factor, 101, 739

ROGERS, H. & HENDERSON, G. Activation of μ - and δ -opioid receptors present on the same nerve terminals depresses transmitter release in the mouse hypogastric ganglion, 101, 505

ROGERS, H. *see* HAYES, A.G., 101, 944

ROMÁN, M. *see* IRIARTE, C.F., 101, 257

ROTONDO, D. *see* DAVIDSON, J., 100, 542
 ROUGIER, O. *see* PILSUDSKI, R., 100, 581
 ROUSSI, N. *see* RHALEB, N-E., 99, 445
 ROVERO, P., PATACCINI, R. & MAGGI, C.A. Structure-activity studies on endothelin (16-21), the C-terminal hexapeptide of the endothelins, in the guinea-pig bronchus, 101, 232
 ROVERO, P. *see* MAGGI, C.A., 99, 186
 —, *see* MAGGI, C.A., 100, 588
 ROWAN, E.G., PEMBERTON, K.E. & HARVEY, A.L. On the blockade of acetylcholine release at mouse motor nerve terminals by β -bungarotoxin and crototoxin, 100, 301
 ROWAN, M.J. *see* O'CONNOR, J.J., 101, 171
 RUBIO, R. *see* GIDDAY, J.M., 100, 95
 RUDOLPHI, K.A. *see* ANDINÉ, P., 100, 814
 RUPNIAK, N.M.J. *see* TRICKLEBANK, M.D., 101, 753
 RUSH, E.A. *see* REYNOLDS, I.J., 101, 178
 RUSKOaho, H. *see* KINNUNEN, P., 99, 701
 RUTKOWSKI, B. *see* JOHNS, E.J., 99, 317
 RUYTJENS, I.F. *see* BOECKXSTAENS, G.E., 101, 460
 RYAN, J.W. *see* CATRAVAS, J.D., 101, 121
 RYANG, S., TAKEI, S., KAWAI, T., IMAIZUMI, Y. & WATANABE, M. Atropine-resistant relaxation induced by high K^+ in iris dilator muscle of the rat and pig, 100, 401

S

SADA, H. *see* KOJIMA, M., 99, 327
 —, *see* KOJIMA, M., 99, 334
 SANDRAEI, H. *see* PIPER, I., 101, 901
 SAHARA, T. *see* KURIHARA, J., 99, 91
 SAINT, D.A. *see* GAGE, P.W., 100, 467
 SAKURADA, T., MANOME, Y., TAN-NO, K., SAKURADA, S. & KISARA, K. The effects of substance P analogues on the scratching, biting and licking response induced by intrathecal injection of N-methyl-D-aspartate in mice, 101, 307
 SAKURADA, S. *see* BAGETTA, G., 101, 655
 —, *see* SAKURADA, T., 101, 307
 SALONEN, R.O. *see* WEBBER, S.E., 99, 21
 SALVEMINI, D., RADZISZEWSKI, W., KORBUT, R. & VANE, J. The use of oxyhaemoglobin to explore the events underlying inhibition of platelet aggregation induced by NO or NO-donors, 101, 991
 SAMANIN, R. *see* INVERNIZZI, R., 100, 774
 SAMHOUN, M.N. *see* BRAMLEY, A.M., 99, 762
 SANDERS, L. *see* KAUMANN, A.J., 100, 879
 SANGER, G.J. *see* MOSS, H.E., 100, 497
 SANJAR, S., AOKI, S., BOUBEKEUR, A.K., CHAPMAN, I.D., SMITH, D., KINGS, M.A. & MORLEY, J. Eosinophil accumulation in pulmonary airways of guinea-pigs induced by exposure to an aerosol of platelet-activating factor: effect of anti-asthma drugs, 99, 267
 SANJAR, S., AOKI, S., KRISTERSSON, A., SMITH, D. & MORLEY, J. Antigen challenge induces pulmonary airway eosinophil accumulation and airway hyperreactivity in sensitized guinea-pigs: the effect of anti asthma drugs, 99, 679
 SANJAR, S., SMITH, D., KINGS, M.A. & MORLEY, J. Pretreatment with rh-GM-CSF, but not rh-IL3, enhances PAF-induced eosinophil accumulation in guinea-pig airways, 100, 399
 SANO, T., SUGIYAMA, S., TAKI, K., HANAKI, Y., SHIMADA, Y. & OZAWA, T. Effects of antiarrhythmic agents classified as class III group on ischaemia-induced myocardial damage in canine hearts, 99, 577
 SARRIA, B. *see* ADVENIER, C., 100, 168
 SASAGURI, T. & WATSON, S.P. Phorbol esters inhibit smooth muscle contractions through activation of Na^+-K^+ -ATPase, 99, 237
 SASAGURI, T. *see* WATSON, S.P., 99, 216
 SASAKI, H. *see* AIKAWA, T., 100, 13
 SASSEN, L.M.A., DUNCKER, D.J.G.M., GHO, B.C.G., DIEKMANN, H.W. & VERDOUW, P.D. Haemodynamic profile of the potassium channel activator EMD 52692 in anaesthetized pigs, 101, 605
 SASSEN, L.M.A., SOEI, L.K., KONING, M.M.G. & VERDOUW, P.D. The central and regional cardiovascular responses to intravenous and intracoronary administration of the phenylidihydropyridine elgiodipine in anaesthetized pigs, 99, 355
 SATOH, K. *see* YAMADA, H., 100, 413
 SAUNDERS, J. *see* FREEDMAN, S.B., 101, 575
 SAVINEAU, J.-P. & MIRONNEAU, J. Caffeine acting on pregnant rat myometrium: analysis of its relaxant action and its failure to release Ca^{2+} from intracellular stores, 99, 261

SAXENA, P.R. *see* VAN DER GIESSEN, W.J., 100, 277
 —, *see* VILLALÓN, C.M., 100, 655
 SAYET, I. *see* MIRONNEAU, J., 101, 6
 SAZ, H.J. *see* CHRIST, D., 101, 971
 SCARPACE, P.J. *see* BORST, S.E., 101, 650
 SCHATTNER, M.A., GEFFNER, J.R., ISTURIZ, M.A. & LAZZARI, M.A. Inhibition of human platelet activation by polymorphonuclear leukocytes, 101, 253
 SCHIAVONE, A. *see* MICHELETTI, R., 100, 150
 SCHILLER, P.W. *see* RECHTMAN, M.P., 101, 269
 SCHINI, V.B. *see* BOULANGER, C., 99, 176
 —, *see* BOULANGER, C., 101, 152
 SCHLICKER, E. *see* KOHLENBACH, A., 100, 365
 SCHMIDT, H.H.W., BAEBLICH, S.E., ZERNIKOW, B.C., KLEIN, M.M. & BÖHME, E. L-Arginine and arginine analogues: effects on isolated blood vessels and cultured endothelial cells, 101, 145
 SCHMIDT, W.E. *see* KATSOULIS, S., 101, 297
 SCHMIED, R. & KORTH, M. Muscarinic receptor stimulation and cyclic AMP-dependent effects in guinea-pig ventricular myocardium, 99, 401
 SCHMITZ, W. *see* KOHL, C., 101, 829
 SCHMUTZ, M. *see* FAGG, G.E., 99, 791
 SCHOLFIELD, C.N. *see* McGIVERN, J., 101, 217
 SCHOLZ, H. *see* KOHL, C., 101, 829
 SCHOLZ, J. *see* KOHL, C., 101, 829
 SCHULZ, R. *see* REES, D.D., 101, 746
 SCHÜTZ, W. *see* NANOFF, C., 100, 63
 SCHWAM, H. *see* SUGRUE, M.F., 99, 59
 SCHWÖRER, H. *see* KATSOULIS, S., 101, 297
 SCOPES, D.I.C. *see* HAYES, A.G., 101, 944
 SCOTT, R.H. & DOLPHIN, A.C. Voltage-dependent modulation of rat sensory neurone calcium channel currents by G protein activation: effect of a dihydropyridine antagonist, 99, 629
 SEABROOK, G.R., HOWSON, W. & LACEY, M.G. Electrophysiological characterization of potent agonists and antagonists at pre- and postsynaptic $GABA_A$ receptors on neurones in rat brain slices, 101, 949
 SEBASTIÃO, A.M. & RIBEIRO, J.A. Interactions between adenosine and phorbol esters or lithium at the frog neuromuscular junction, 100, 55
 SEBASTIÃO, A.M., STONE, T.W. & RIBEIRO, J.A. The inhibitory adenosine receptor at the neuromuscular junction and hippocampus of the rat: antagonism by 1,3,8-substituted xanthines, 101, 453
 SEKI, N. *see* NAKASHIMA, M., 101, 581
 SEKIZAWA, K. *see* AIKAWA, T., 101, 13
 SELF, G.J. *see* HENRY, P.J., 100, 786
 SELLIN, L.C. *see* THESLEFF, S., 100, 487
 SENARD, J.-M. *see* ESTAN, L., 101, 329
 SENARD, J.-M. *see* GALITZKY, J., 100, 862
 SESSA, W.C. & MULLANE, K.M. Release of a neutrophil-derived vasoconstrictor agent which augments platelet-induced contractions of blood vessels *in vitro*, 99, 553
 SESSA, W.C. *see* HECKER, M., 101, 237
 SHADER, R.I. *see* GALPERN, W.R., 101, 839
 —, *see* KAPLAN, G.B., 100, 435
 SHAH, M.A. *see* NEAL, M.J., 100, 324
 SHAHID, M., MARTORANA, M.G., COTTNEY, J.E. & MARSHALL, R.J. Pharmacological and biochemical effects of the cardiotonic agent Org10325 in isolated cardiac and vascular tissue preparations, 100, 735
 SHARP, T. *see* BACKUS, L.I., 100, 793
 SHEARER, M.A. *see* NAPIER, F.E., 100, 247
 SHEEHAN, M.J. *see* HAYES, A.G., 101, 944
 SHEN, K.-Z., BARAJAS-LOPEZ, C. & SURPRENANT, A. Functional characterization of neuronal pre- and postsynaptic α_2 -adrenoceptor subtypes in guinea-pig submucosal plexus, 101, 925
 SHENG, H. *see* GILLESPIE, J.S., 99, 194
 SHEPARD, K.L. *see* SUGRUE, M.F., 99, 59
 SHERIDAN, D.J. *see* FLORES, N.A., 101, 734
 SHIBATA, S. *see* KONDO, N., 101, 241
 —, *see* KONDO, N., 101, 789
 SHIGENOBU, K. *see* TANAKA, H., 100, 138
 SHIMA, M. *see* HORIO, S., 100, 636
 SHIMADA, Y. *see* SANO, T., 99, 577
 SHINNICK-GALLAGHER, P. *see* KUMAMOTO, E., 99, 157
 SHIRAI, K., KAWAI, Y. & OHHASHI, T. Contractile and relaxant responses of the canine isolated spinal artery to vasoactive substances, 101, 200

SIAREY, R.J. *see* DOLIN, S.J., 101, 691
 —, *see* LONG, S.K., 100, 850

SILINSKY, E.M. *see* HIRSH, J.K., 101, 311

SILVA, P.M.R. *see* HENRIQUES, M.G.M.O., 99, 164

SIMPSON, A.W.M. *see* MURRAY, K.J., 99, 612

SIMPSON, W.T. *see* CARR, R.D., 100, 83

SINGER, E.A. *see* VALENTA, B., 99, 713

SINGH, L., OLES, R.J. & TRICKLEBANK, M.D. Modulation of seizure susceptibility in the mouse by the strychnine-insensitive glycine recognition site of NMDA receptor/ion channel complex, 99, 285

SINGH, L., WONG, E.H.F., KESINGLAND, A.C. & TRICKLEBANK, M.D. Evidence against an involvement of the haloperidol-sensitive σ recognition site in the discriminative stimulus properties of (+)-N-allylnormetazocine ((+)-SKF 10,047), 99, 145

SINGH, L. *see* TRICKLEBANK, M.D., 101, 753

SINISCALCHI, A. *see* BIANCHI, C., 101, 448

SIROIS, M.G., PLANTE, G.E., BRAQUET, P. & SIROIS, P. Role of eicosanoids in PAF-induced increases of the vascular permeability in rat airways, 101, 896

SIROIS, P. *see* CADIEUX, A., 101, 193
 —, *see* SIROIS, M.G., 101, 896

SITAR, D.S. *see* CHANDLER, C.J., 101, 227

SJÖQUIST, P.-O. *see* WAHLUND, G., 99, 592

SJÖSTRAND, N.O. *see* ALARANTA, S., 101, 472

SKÄRBY, T.V.Ch., HÖGESTÄTT, E.D. Differential effects of calcium antagonists and Bay K 8644 on contractile responses to exogenous noradrenaline and adrenergic nerve stimulation in the rabbit ear artery, 101, 961

SKOOGH, B-E. *see* LÖTVALL, J.O., 100, 69

SLIMOVITCH, C. *see* COMMISSIONG, J.W., 99, 741

SLIVJAK, M.J. *see* SMITH III, E.F., 100, 195

SMALL, R.C., GOOD, D.M., DIXON, J.S. & KENNEDY, I. The effects of epithelium removal on the actions of cholinomimetic drugs in opened segments and perfused tubular preparations of guinea-pig trachea, 100, 516

SMART, T.G. & CONSTANTI, A. Differential effect of zinc on the vertebrate GABA_A-receptor complex, 99, 643

SMITH, M.J. *see* LEURS, R., 101, 881

SMITH, D. *see* SANJAR, S., 99, 267
 —, *see* SANJAR, S., 99, 679
 —, *see* SANJAR, S., 100, 399

SMITH, D.A.S. *see* LONG, S.K., 100, 850

SMITH III, E.F., SLIVJAK, M.J., EGAN, J.W., ECKARDT, R.D. & NEWTON, J.F. SK & F S-106203 inhibits leukotriene C₄, leukotriene D₄ and leukotriene E₄ vasopressor responses in the conscious rat, 100, 195

SMITH, G.W., FARMER, J.B., INCE, F., MATU, K., MITCHELL, P.D., NAYA, I. & SPRINGTHORPE, B. FPL 63012AR: a potent D₁-receptor agonist, 100, 295

SMITH, H. *see* SPICER, B.A., 101, 821

SMITH, J.A. & LANG, D. Release of endothelium-derived relaxing factor from pig cultured aortic endothelial cells, as assessed by changes in endothelial cell cycle GMP content, is inhibited by a phorbol ester, 99, 565

SMITH, J.B. *see* AKSOY, M.O., 99, 461

SMITH, R.D. *see* MOUSA, S.A., 99, 233
 —, *see* MOUSA, S.A., 100, 379

SMITH, R.L. *see* SUGRUE, M.F., 99, 59

SMITH, S.J. & ENGLAND, P.J. The effects of Ca²⁺ sensitizers on the rates of Ca²⁺ release from cardiac troponin C and the troponin-tropomyosin complex, 100, 779

SMITS, J.F.M. *see* DRIEMAN, J.C., 99, 15

SNEDDON, P. *see* DALZIEL, H.H., 99, 820

SOEI, L.K. *see* SASSEN, L.M.A., 99, 355

SOFIA, R.D. *see* CHAND, N., 101, 541

SOLLEVOLD, H.A. *see* BROOKS, D.P., 100, 79

SOLSONA, C.S. *see* HIRSH, J.K., 100, 311

SOMERS, Y. *see* DE CLERCK, F., 99, 631

SOUCCAR, C. *see* FANN, M.L., 100, 441

SOUTHERTON, J.S. *see* NEWGREEN, D.T., 100, 605

SPEDDING, M. *see* BROWN, C.M., 99, 481
 —, *see* BROWN, C.M., 99, 803
 —, *see* DAINTY, I.A., 100, 241
 —, *see* KENNY, B.A., 100, 211

SPERELAKIS, N. *see* KOJIMA, M., 99, 327
 —, *see* KOJIMA, M., 99, 334

SPICER, B.A., BAKER, R.C., HATT, P.A., LAYCOCK, S.M. & SMITH, H. The effects of drugs on Sephadex-induced eosinophilia and lung hyper-responsiveness in the rat, 101, 821

SPINA, D. *see* COYLE, A.J., 101, 31

SPONER, G. *see* DORSZEWSKI, A., 101, 686

SPRAGGS, C.F. *see* BUNCE, K.T., 101, 889

SPRINGTHORPE, B. *see* SMITH, G.W., 100, 295

STAMFORD, I.F. *see* D'AMATO, M., 100, 126

STANFORD, S.C., GETTINS, D. & LITTLE, H.J. Adverse effects on rat cardiac function *ex vivo* after repeated administration of the benzodiazepine partial inverse agonist, FG7142, 99, 441

STARKE, K. *see* BULLOCH, J.M., 99, 279

STEELE, D.S. *see* MILLER, D.J., 100, 843

STEINMANN, M. *see* FAGG, G.E., 99, 791

STERN, G.M. *see* KENT, A.P., 100, 743

STEWART, G.J. *see* AKSOY, M.O., 99, 461

STILLINGS, M. *see* GALITZKY, J., 100, 862

STOCLET, J.C. *see* ANDRIANTSITOHAINA, R., 99, 389

STOLERMAN, I.P. *see* REAVILL, C., 99, 273

STONE, T.W. Sensitivity of hippocampal neurones to kainic acid, and antagonism by kynureneate, 100, 847
 —, *see* BARTRUP, J.T., 101, 97
 —, *see* SEBASTIÃO, A.M., 101, 453

STREET, L.J. *see* FREEDMAN, S.B., 101, 575

STRETTON, C.D. *see* BELVISI, M.G., 100, 131

STROHAMMEN, C. *see* FEIFEL, R., 99, 445

STRUYKER BOUDIER, H.A.J. *see* DRIEMAN, J.C., 99, 15

SUBISSI, A., GUELFI, M. & CRISCUOLI, M. Angiotensin converting enzyme inhibitors potentiate the bronchoconstriction induced by substance P in the guinea-pig, 100, 502

SUBISSI, A. *see* DEL MONTE, M., 55, 582

SUGAMA, K. *see* ITO, S., 99, 13

SUGIYAMA, K. *see* TOKIMASA, T., 101, 190

SUGIYAMA, S. *see* SANO, T., 99, 577

SUGRUE, M.F., GAUTHERON, P., MALLORGA, P., NOLAN, T.E., GRAHAM, S.L., SCHWAM, H., SHEPARD, K.L. & SMITH, R.L. L-662,583 is a topically effective ocular hypotensive carbonic anhydrase inhibitor in experimental animals, 99, 59

SULAKHE, P.V. *see* WANG, H., 100, 5

SUMAN-CHAUHAN, N., GUARD, S., WILLIAMS, B.J. & WATLING, K.J. Pharmacological characterization of tachykinin-stimulated inositol phospholipid hydrolysis in peripheral tissues, 101, 1001

SUMNER, M.J. & HUMPHREY, P.P.A. Sumatriptan (GR43175) inhibits cyclic-AMP accumulation in dog isolated saphenous vein, 99, 219

SUNN, N., HARRIS, P.J. & BELL, C. Effects on renal sympathetic axons in dog of acute 6-hydroxydopamine treatment in combination with selective neuronal uptake inhibitors, 99, 655

SUPRENANT, A. *see* SHEN, K-Z., 101, 925
 —, *see* VANNER, S., 99, 840

SUZUKI, R. *see* KODAMA, I., 101, 803

SUZUKI, S. *see* KATSUYAMA, H., 100, 41

SWANK, S.R. *see* EGLEN, R.M., 101, 513

SWEEP, C.G.J. *see* VAN GIERSBERGEN, P.L.M., 99, 467

SWEETMAN, A.J. *see* BAYDOUN, A.R., 101, 15

SWIERKOSZ, T.A. *see* HECKER, M., 101, 237

SYED, M.M., PAREKH, A.B. & TOMITA, T. Receptors involved in mechanical responses to catecholamines in the circular muscle of guinea-pig stomach treated with meclofenamate, 101, 809

T

TABRIZCHI, R. & PANG, C.Y.Y. Adrenalectomy abolishes antagonism of α -adrenoceptor-mediated hypotension by a β -blocker in conscious rats, 101, 358

TACKE, R. *see* FEIFEL, R., 99, 445

TÄGERUD, S. *see* THESLEFF, S., 100, 487

TAI, N.T. *see* KAPLAN, G.B., 100, 435

TAIRA, N. *see* YAMADA, H., 100, 413
 —, *see* YANAGISAWA, T., 101, 157

TAKAHASHI, K. & AKAIKE, N. Nicergoline inhibits T-type Ca²⁺ channels in rat isolated hippocampal CA1 pyramidal neurones, 100, 705

TAKANAKA, A. *see* NAKAZAWA, K., 101, 224

TAKASE, H. *see* MORITOKI, H., 99, 152
 —, *see* MORITOKI, H., 100, 569

TAKAYANAGI, I. *see* HISAYAMA, T., 100, 677

TAKEI, S. *see* RYANG, S., 100, 401

TAKEUCHI, T. *see* HATA, F., 101, 1011

TAKI, K. *see* SANO, T., 99, 577

TAKISHIMA, T. *see* AIKAWA, T., 101, 13

TALMANT, J-M. *see* MAZOIT, J.X., 101, 843

TAMARGO, J. *see* DIEZ, J., 100, 305

TANAKA, H. & SHIGENOBU, K. Role of β -adrenoceptor-adenylate cyclase system in the developmental decrease in sensitivity to isoprenaline in foetal and neonatal rat heart, **100**, 138

TANG, J.K. *see* FREEDMAN, S.B., **101**, 575

TANG, R., NOVAS, M.L., GLAVINOVIC, M.I. & TRIFARÓ, J.-M. Effect of quinine on the release of catecholamines from bovine cultured chromaffin cells, **99**, 548

TANIGUCHI, N. *see* KOJIMA, M., **99**, 334

TANIOKA, A. *see* MORITOKI, H., **99**, 152

—, *see* MORITOKI, H., **100**, 569

TANNIERE-ZELLER, M. *see* WILLIAMS, F.M., **100**, 729

TAN-NO, K. *see* SAKURADA, T., **101**, 307

TASKINEN, T. *see* KINNUNEN, P., **99**, 701

TATTERSALL, J.E.H. Effects of organophosphorus anticholinesterases on nicotinic receptor ion channels at adult mouse muscle endplates, **101**, 349

TAVARES, I.A. *see* GOEL, R.K., **99**, 289

TAYLOR, G.W. *see* NEWMAN, C.M., **99**, 825

TAYLOR, J.C. *see* PACIOREK, P.M., **100**, 289

TAYLOR, M.E. *see* APPLEYARD, M.E., **101**, 599

TEMPLE, D.M. *see* NAPIER, F.E., **100**, 247

TEMPLETON, A.G.B. *see* DAINTY, I.A., **100**, 767

—, *see* MCGRATH, J.C., **99**, 77

TERAOKA, H., YAMADA, Y., NADAZATO, Y. & OHGA, A. The role of Na^+ in muscarinic receptor-mediated catecholamine secretion in the absence of extracellular Ca^{2+} in cat perfused adrenal glands, **101**, 67

TERRAR, D.A. *see* WHITE, E., **101**, 399

TESHIGAWARA, T. *see* YANAGISAWA, T., **101**, 157

THAINA, P. *see* DE LUCA, A., **101**, 437

THEDINGA, K. *see* FAGG, G.E., **99**, 791

THESLEFF, S., SELLIN, L.C. & TÅGERUD, S. Tetrahydroaminoacridine (tacrine) stimulates neurosecretion at mammalian motor endplates, **100**, 487

THIEMERMANN, C., MAY, G.R., PAGE, C.P. & VANE, J.R. Endothelin-1 inhibits platelet aggregation *in vivo*: a study with ^{111}In -indium-labelled platelets, **99**, 303

THIJSEN, H.H.W. *see* DRIEMAN, J.C., **99**, 15

THOMANN, H. *see* CRISCIONE, L., **100**, 31

THOMSON, D.S. *see* KOWALSKI, M.T., **99**, 27

THOOLEN, M.J.M. *see* MOUSA, S.A., **100**, 379

TIBIRICA, E. *see* FELDMAN, J., **100**, 600

TIMMERMAN, H. *see* LEURS, R., **101**, 881

TINEL, M. *see* PIROVINO, M., **99**, 35

TODT, H. *see* KRUMPL, G., **100**, 855

TOFFANO, G. *see* COMMISSIONG, J.W., **99**, 741

TOGO, J. *see* FARMER, S.G., **100**, 73

TOHSE, N., HATTORI, Y., NAKAYA, H., ENDOU, M. & KANNO, M. Inability of endothelin to increase Ca^{2+} current in guinea-pig heart cells, **99**, 437

TOKIMASA, T., SUGIYAMA, K., AKASU, T. & MUTEKI, T. Volatile anaesthetics inhibit a cyclic AMP-dependent sodium-potassium current in cultured sensory neurones of bullfrog, **101**, 190

TOKUNO, H. *see* FUKUMITSU, T., **100**, 593

—, *see* KIHIRA, M., **100**, 353

TOMERA, J.F. & MARTYN, J.A.J. Thermal trauma alters myocardial cyclic nucleotides and protein content in mice, **101**, 263

TOMITA, T. *see* FUKUMITSU, T., **100**, 593

—, *see* KIHIRA, M., **100**, 353

—, *see* SYED, M.M., **100**, 809

TOO, H.P. *see* GUARD, S., **99**, 767

TORRES, M. *see* CASTRO, E., **100**, 360

TOTH, M. *see* KOHL, C., **101**, 829

TOURNEUR, Y. *see* PILSUDSKI, R., **100**, 581

TOYAMA, J. *see* KODAMA, I., **101**, 803

TRAN, M.-A. *see* ESTAN, L., **101**, 329

—, *see* RASCOL, O., **100**, 471

TRAYNOR, J.R., HUNTER, J.C., RODRIGUEZ, R.E., HILL, R.G. & HUGHES, J. δ -Opioid receptor binding sites in rodent spinal cord, **100**, 319

TRAYNOR, J.R. *see* DIXON, D.M., **101**, 674

TREHERNE, J.M. *see* ASHFORD, M.L.J., **101**, 531

TRICKLEBANK, M.D., HONORÉ, T., IVERSEN, S.D., KEMP, J.A., KNIGHT, A.R., MARSHALL, G.R., RUPNIAK, N.M.J., SINGH, L., TYE, S., SATJEN, F. & WONG, E.H.G. The pharmacological properties of the imidazobenzodiazepine, FG 8205, a novel partial agonist at the benzodiazepine receptor, **101**, 753

TRICKLEBANK, M.D. *see* MOSER, P.C., **99**, 343

—, *see* SINGH, L., **99**, 145

—, *see* SINGH, L., **99**, 285

TRIGGLE, C.R. *see* WANG, H., **100**, 5

TRIFARÓ, J.-M. *see* TANG, R., **99**, 548

TSUBAKI, K. *see* NISHIMURA, M., **100**, 114

TUCKER, J.F., BRAVE, S.R., CHARALAMBOUS, L., HOBBS, A.J. & GIBSON, A. L-N^G-nitro arginine inhibits non-adrenergic, non-cholinergic relaxations of guinea-pig isolated tracheal smooth muscle, **100**, 661

TUISL, E. *see* NANOFF, C., **100**, 63

TUMER, N., HOUCK, W.T., BOEHM, C. & ROBERTS, J. Cardiac β -adrenoceptor binding characteristics with age following adrenal demedullation, **99**, 87

TURCONI, M. *see* MICHELETTI, R., **100**, 395

TURINI, D. *see* MAGGI, C.A., **99**, 186

TWOMEY, B., MUID, R.E. & DALE, M.M. The effect of putative protein kinase C inhibitors, K252a and staurosporine, on the human neutrophil respiratory burst activated by both receptor stimulation and post-receptor mechanisms, **100**, 819

TYE, S. *see* TRICKLEBANK, M.D., **101**, 753

TYERS, M.B. *see* BUTLER, A., **101**, 591

—, *see* HAGAN, R.M., **99**, 227

—, *see* HAYES, A.G., **101**, 944

U

UCHIMURA, N. & NORTH, R.A. Actions of cocaine on rat nucleus accumbens neurones *in vitro*, **99**, 736

UDOH, F.V. *see* OKWUSABA, F.K., **101**, 133

UEDA, H. *see* HORIO, S., **100**, 636

—, *see* MORITOKI, H., **100**, 569

UEMATSU, T. *see* ITAYA, T., **99**, 572

UNDEM, B.J. *see* ELLIS, J.L., **101**, 875

URH, R.R. *see* DODSON, B.A., **101**, 710

USUNE, S. *see* KATSURAGI, T., **100**, 370

URIU, T. *see* OTANI, H., **100**, 207

V

VALCIC, M. *see* CHRIST, G.J., **101**, 375

VALENTE, B. & SINGER, E.A. Hypotensive effects of 8-hydroxy-2-(di-n-propylamino)tetralin and 5-methylurapidil following stereotaxic microinjection into the ventral medulla of the rat, **99**, 713

VAN DER GIJSEN, W.J., DUNCKER, D.J., SAXENA, P.R. & VERDOUW, P.D. Nimodipine has no effect on the cerebral circulation in conscious pigs, despite an increase in cardiac output, **100**, 277

VAN DUINKERKEN, E. *see* VAN GIERSBERGEN, P.L.M., **99**, 467

VANE, J. *see* LIDBURY, P.S., **101**, 527

—, *see* SALVEMINI, D., **101**, 991

VANE, J.R. *see* HECKER, M., **101**, 237

—, *see* THIEMERMANN, C., **99**, 303

VAN GEIRSBERGEN, P.L.M., VAN DUINKERKEN, E., SWEEP, C.G.J., WIEGANT, V.M., VAN REE, J.M. & DE JONG, W. α -Methyldopa induces a naltrexone-insensitive antinociception and hypomotility in rats, **99**, 467

VANHOUTTE, P.M. *see* BOULANGER, C., **99**, 176

—, *see* BOULANGER, C., **101**, 152

VAN MAERCKE, Y.M. *see* BOECKXSTAENS, G.E., **101**, 460

VANNER, S. & SUPRENTANT, A. Effects of 5-HT₃ receptor antagonists on 5-HT and nicotinic depolarizations in guinea-pig submucosal neurones, **99**, 840

VANNI, L. *see* BRUNELLESCHI, S., **100**, 417

VAN REE, J.M. *see* VAN GIERSBERGEN, P.L.M., **99**, 467

VAN VALEN, G. *see* HAVILL, A.M., **99**, 396

VARDI, Y. *see* FINBERG, J.P.M., **101**, 698

VARGA, K. & KUNOS, G.K. Ethanol inhibition of baroreflex bradycardia: role of brainstem GABA receptors, **101**, 773

VARGAFTIG, B.B. *see* DESQUAND, S., **100**, 217

—, *see* HENRIQUES, M.G.M.O., **99**, 164

—, *see* PRETOLANI, M., **100**, 185

VARGAS, L. *see* FASCIOLI, J.C., **101**, 344

VARMA, D.R. *see* POTVIN, W., **100**, 341

VARRÓ, A. *see* LATHROP, D.A., **99**, 119

VARRÓ, A. *see* LATHROP, D.A., **99**, 124

VEALE, M.A. *see* BARLOW, R.B., **99**, 622

VERBEUREN, T.J. *see* BOECKXSTAENS, G.E., **101**, 460

VERDOUW, P.D. *see* SASSEN, L.M.A., **99**, 355

—, *see* SASSEN, L.M.A., **101**, 605

—, *see* VAN DER GIJSEN, W.J., **100**, 277

VERNON, C.A. *see* BANKS, B.E.C., **99**, 350

VILA, E. & MACRAE, I.M. Effect of neuropeptide Y on α -adrenoceptor-mediated cardiovascular responses in the pithed rat, **100**, 840

VILA, J.M. *see* DE AGUILERA, E.M., 99, 439
 VILLALÓN, C.M., DEN BOER, M.O., HEILIGERS, J.P.C. & SAXENA, P.R. Mediation of 5-hydroxytryptamine-induced tachycardia in the pig by the putative 5-HT₄ receptor, 100, 665
 VILLANUEVA, M.M. *see* IRIARTE, C.F., 101, 257
 VINIEGRA, S. *see* BALLESTA, J.J., 101, 21
 VON POEHL, C., IVEN, H. & BRASCH, H. Influence of N-ethylmaleimide on action potential and force of contraction of guinea-pig papillary muscles, 101, 406
 VOSKUYL, R.A. *see* DINGEMANSE, J., 99, 53

W

WADSWORTH, R.M. *see* KWAN, Y.W., 99, 774
 —, *see* KWAN, Y.W., 100, 407
 WAELBROECK, M. *see* FEIFEL, R., 99, 445
 WAGNER-RODER, M. *see* FEIFEL, R., 99, 445
 WAHLUND, G., NERME, V., ABRAHAMSSON, T. & SJÖQUIST, P.-O. The β_1 - and β_2 -adrenoceptor affinity and β_1 -blocking potency of S- and R-metoprolol, 99, 592
 WALKER, E.R.H. *see* FOSTER, S.J., 99, 113
 WALKER, S.W. *see* LIGHTLY, E.R.T., 99, 709
 WALLACE, J.L. *see* MATHISON, R., 101, 93
 WALLWORK, J. *see* DINH XUAN, A.T., 99, 9
 WALSH, L.K.M. *see* EGLEN, R.M., 101, 513
 WALTER, D.S. *see* JOHN, G.W., 100, 699
 WANG, H., GOPALAKRISHNAN, V., MCNEILL, J.R., SULAKHE, P.V. & TRIGGLE, C.R. Calcium antagonizes the magnesium-induced high affinity state of the hepatic vasopressin receptor for the agonist interaction, 100, 5
 WANG, M.Y. & DUN, N.J. Phaclofen-insensitive presynaptic inhibitory action of (\pm)-baclofen in neonatal rat motoneurones *in vitro*, 99, 413
 WARNER, J.A. *see* BANKS, B.E.C., 99, 350
 WARNER, T.D. Simultaneous perfusion of rat isolated superior mesenteric arterial and venous beds: comparison of their vasoconstrictor and vasodilator responses to agonists, 99, 427
 WARREN, J.B. *see* NEWMAN, C.M., 99, 825
 WARRINGA, R.A.J. *see* BRUIJNZEEL, P.L.B., 99, 798
 WATANABE, M. *see* KAWAI, T., 100, 507
 —, *see* RYANG, S., 100, 401
 WATERFALL, J.F. *see* PACIOREK, P.M., 100, 289
 WATHEY, W.B. *see* CRIDDLE, D.N., 99, 477
 WATJEN, F. *see* TRICKLEBANK, M.D., 101, 753
 WATLING, K.J. *see* GUARD, S., 99, 767
 —, *see* SUMAN-CHAUHAN, N., 101, 1001
 WATSON, J.E. *see* KARMAZYN, M., 100, 826
 WATSON, S.P., LAI, J. & SASAGURI, T. K⁺-stimulation of the phosphoinositide pathway in guinea-pig ileum longitudinal smooth muscle is predominantly neuronal in origin and mediated by the entry of extracellular Ca²⁺, 99, 216
 WATSON, S.P. *see* GUARD, S., 99, 767
 —, *see* SASAGURI, T., 99, 237
 WEBBER, S.E., SALONEN, R.O. & WIDDICOMBE, J.G. Receptors mediating the effects of 5-hydroxytryptamine on the tracheal vasculature and smooth muscle of sheep, 99, 21
 WEBSTER, R.A. *see* KENT, A.P., 100, 743
 WEG, V.B. *see* HENRIQUES, M.G.M.O., 99, 164
 WELLS, E. *see* CARR, R.D., 100, 83
 —, *see* CARR, R.D., 100, 90
 WESTON, A.H. *see* NEWGREEN, D.T., 100, 605
 WHITE, E. & TERRAR, D.A. The effects of ryanodine and caffeine on Ca-activated current in guinea-pig ventricular myocytes, 101, 399
 WHITING, P.H. *see* BOATENG, Y.A., 101, 301
 WHITING, R.L. *see* EGLEN, R.M., 99, 637
 —, *see* EGLEN, R.M., 101, 513
 —, *see* MICHEL, A.D., 99, 560
 WHITTLE, B.J.R., LOPEZ-BELMONTE, J. & MONCADA, S. Regulation of gastric mucosal integrity by endogenous nitric oxide: interactions with prostanoids and sensory neuropeptides in the rat, 99, 607
 WHITTLE, B.J.R. *see* HAMID-BLOOMFIELD, S., 100, 761
 —, *see* HUTCHESON, I.R., 101, 815
 WHITWORTH, P., HEAL, D.J. & KENDALL, D.A. The effects of acute and chronic lithium treatment on pilocarpine-stimulated phosphoinositide hydrolysis in mouse brain *in vivo*, 101, 39
 WHITWORTH, P. *see* KENDALL, D.A., 100, 723
 WIDDICOMBE, J.G. *see* WEBBER, S.E., 99, 21
 WIEGANT, V.M. *see* VAN GIERSBERGEN, P.L.M., 99, 467
 WIKLUND, N.P. *see* PERSSON, M.G., 100, 463

WILKIN, G.P. *see* McDERMOTT, A.M., 101, 615
 WILKINSON, G.F. *see* PACIOREK, P.M., 100, 289
 WILKINSON, L.S. & COLLARD, K.J. Synaptosomal tryptophan uptake and efflux following lesion of central 5-hydroxy-tryptaminergic neurones, 101, 981
 WILLCOCKS, A.L. *see* CHILVERS, E.R., 99, 297
 WILLIAMS, A. *see* BARLOW, R.B., 99, 622
 WILLIAMS, B.C. *see* LIGHTLY, E.R.T., 99, 709
 WILLIAMS, B.J. *see* SUMAN-CHAUHAN, N., 101, 1001
 WILLIAMS, F.M., COLLINS, P.D., TANNIERE-ZELLER, M. & WILLIAMS, T.J. The relationship between neutrophils and increased microvascular permeability in a model of myocardial ischaemia and reperfusion in the rabbit, 100, 729
 WILLIAMS, J.H. *see* BRADING, A.F., 99, 493
 WILLIAMS, T.J. *see* BUCKLEY, T.L., 99, 7
 —, *see* WILLIAMS, F.M., 100, 729
 WILSON, V.G. *see* DALY, C.J., 99, 253
 —, *see* MCGRATH, J.C., 99, 77
 WITHRINGTON, P.G., DHUME, V.G., CROXTON, R. & GERBES, A.L. The actions of human atrial natriuretic factor on hepatic arterial and portal vascular beds of the anaesthetized dog, 99, 810
 WONG, E.H.F. *see* SINGH, L., 99, 145
 —, *see* TRICKLEBANK, M.D., 101, 753
 WONG-DUSTING, H.K. *see* DE LUCA, A., 101, 437
 WOOD, B.E. *see* LEFF, P., 101, 645
 —, *see* O'CONNOR, S.E., 101, 640
 WOOD, J.M. *see* EGLEME, C., 100, 237
 WOODMAN, O.L. Enhanced coronary vasoconstrictor responses to 5-hydroxytryptamine in the presence of a coronary artery stenosis in anaesthetized dogs, 100, 153
 WOODWARD, B. *see* CRIDDLE, D.N., 99, 477
 WOUTERS, L. *see* DE CLERCK, F., 99, 631
 WRIGHT, C.E. & FOZARD, J.R. Differences in regional vascular sensitivity to endothelin-1 between spontaneously hypertensive and normotensive Wistar-Kyoto rats, 100, 107
 WRIGHT, I.K., GARRATT, J.C. & MARSDEN, C.A. Effects of a selective 5-HT₂ agonist, DOI, on 5-HT neuronal firing in the dorsal raphe nucleus and 5-HT release and metabolism in the frontal cortex, 99, 221
 WYANTS, J. *see* DE CLERCK, F., 99, 631
 WYDER, K.J. *see* CLARKE, P.B.S., 99, 509

X

XIANG, J.Z., BRAMMER, M.J. & CAMPBELL, I.C. Studies of receptor-mediated inhibition of ⁴⁵Ca accumulation into synaptosomes, 101, 140

Y

YAGASAKI, O. *see* HATA, F., 101, 1011
 —, *see* NASHIMURA, M., 100, 114
 YAMADA, K., NAKANO, M. & YOSHIDA, S. Inhibition of elevated arginine vasopressin secretion in response to osmotic stimulation and acute haemorrhage by U-62066E, a κ -opioid receptor agonist, 99, 384
 YAMADA, H., YONEYAMA, F., SATOH, K. & TAIRA, N. Specific but differential antagonism by glibenclamide of the vasodepressor effects of cromakalim and nicorandil in spinally-anaesthetized dogs, 100, 413
 YAMADA, H. *see* FABRIS, B., 100, 651
 YAMADA, Y. *see* TERAOKA, H., 101, 67
 YAMAMOTO, M., GOTOH, Y., IMAIZUMI, Y. & WATANABLE, M. Mechanisms of long-lasting effects of benidipine on Ca current in guinea-pig ventricular cells, 100, 669
 YAMANO, N. *see* HATA, F., 101, 1011
 YAMEY, J. *see* BANKS, B.E.C., 99, 350
 YANAGISAWA, M. & OTSUKA, M. Pharmacological profile of a tachykinin antagonist, spantide, as examined on rat spinal motoneurones, 100, 711
 YANAGISAWA, T., TESHIGAWARA, T. & TAIRA, N. Cytoplasmic calcium and the relaxation of canine coronary arterial smooth muscle produced by cromakalim, pinacidil and nicorandil, 101, 157
 YEATS, D.A. & BAKHLE, Y.S. Cationic factors affecting phospholipase activities from human lung, 100, 447
 YONEYAMA, F. *see* YAMADA, H., 100, 413
 YOSHIDA, S. *see* YAMADA, K., 99, 384
 YOUNG, J.M. *see* CRAWFORD, M.L.A., 100, 867

Z

ZAAGSMA, J. *see* REMIE, R., 99, 223
—, *see* ROFFEL, A.F., 99, 293
ZAR, M.A. *see* LUHESHI, G.N., 101, 411
ZEEGER, H.H.M. *see* DRIEMAN, J.C., 99, 15
ZERKOWSKI, H-R. *see* MOTOMURA, S., 101, 363
ZERNIKOW, B.C. *see* SCHMIDT, H.H.H.W., 101, 145
ZERWECK, C.R. *see* AKSOY, M.O., 99, 461

ZHOU, X-F., LIVETT, B.G. Effect of capsaicin-sensitive sensory nerves on plasma glucose and catecholamine levels during 2-deoxyglucose-induced stress in conscious rats, 100, 523
ZICHE, M., MORBIDELLI, L., PACINI, M., DOLARA, P. & MAGGI, C.A. NK₁-receptors mediate the proliferative response of human fibroblasts to tachykinins, 100, 11
ZYSSET, TH. *see* PIROVINO, M., 99, 35

SUBJECT INDEX

A

A23187, stimulation of cyclic GMP production in endothelial cells by, in pig, 101, 152

Absorption, effect of *E. coli* STa enterotoxin on of weakly dissociable drugs, rat jejunum, *in vivo*, 101, 937

Acanthocheilonema viteae, actions of ACh and GABA on, 101, 971

ACE, characterization of and *in vivo* inhibition after quinapril, rat, 100, 651

ACE inhibitor, FPL 63547: pharmacological properties of, 100, 83

—, FPL 63547, preferential biliary elimination of, 100, 90

Acetorphan, effect on response to aerosolised ACh, lung, guinea-pig, 100, 69

N-Acetyl-L-glutamic acid-N-[N²-(5-n-butyl-2-pyridyl) hydrazide, see CGP22979

Acetylcholine, cardiovascular effects of injection of, role of vasopressin release, 100, 471

—, catecholamine secretion evoked by, enhanced by veratridine in absence of extracellular Ca²⁺, cat, 101, 67

—, effect of Bay K 8644 and nifedipine on responses to, rat urinary bladder, 101, 494

—, effects of depressed by Mg²⁺, neocortex, 101, 1006

—, effect of pertussis toxin on negative inotropic actions of, rat, 100, 348

—, enhancement of synthesis of cyclic GMP in presence but not in absence of endothelium, rabbit aorta, 99, 536

—, haemodynamic responses to, effects of L-NAME, rat, 101, 632

—, impairment of relaxations to by phorbol ester, rat aorta, 101, 432

—, induces EDRF-mediated vasodilation, rat kidney, 99, 364

—, inhibition of endothelium-dependent relaxations, effect on endothelin-1 contractions in aging, 100, 889

—, inhibition of vasodilatation by L-NMMA, rabbit skeletal muscle, 100, 463

—, modulation of responses to by mucosal and adventitial surface of epithelium, guinea-pig trachealis, 101, 257

—, phosphorylation in release of, frog motor nerve endings, 101, 311

—, response of spinal artery to, 101, 200

—, role of cyclic AMP and protein kinase A in release of, frog, 101, 311

—, sensitivities and relaxations induced by in relation to degree of stretch or tone, rat aorta, 100, 767

—, temperature-dependence of desensitization induced by, guinea-pig, 100, 636

—, actions on spontaneous contractions of *Dipetalonema viteae*, 101, 971

Acetylcholinesterase, activity following acute and chronic treatment with a benzodiazepine inverse agonist, mouse brain, 101, 599

Acetylcholine release, blockade of by β -bungarotoxin and crototoxin at mouse motor nerve terminals, 100, 301

—, facilitation of regenerative by 3,4-diaminopyridine, mouse motor nerve, 101, 793

—, opposite effects of 5-HT agonists on, guinea-pig, 101, 448

N-Acetylcysteine, effect on tolerance to glyceryl trinitrate, rat, 99, 825

Acetylenic muscarinic receptor antagonists, stereoselective inhibition of by enantiomers and hexahydro-difenidol and acetylenic analogues, 99, 445

[³H]-ACh release, 5-HT₃ evoked release, guinea-pig ileum, 101, 553

ACh release, spontaneous, enhanced by phentethonium at motor nerve terminals, rat, 100, 441

Acid esters of choline, potentiation of, lack of effect of epithelial cholinesterase activity or nervous reflex arc activity, trachea, guinea-pig, 100, 516

Actin polymerization, effect of MK-886 on, human phagocytes, 100, 15

Action potentials, effect of anticholinesterases on, skeletal muscle, mouse, 99, 721

Acyl carnitine esters, effect in isolated perfused heart of rat, 99, 477

Adenosine, anti-adrenergic effect of and blockade by pertussis toxin, comparative study in guinea-pig, rat and human heart, 101, 484

—, assessment of action *in vivo* by use of theophylline on myocardial reactive hyperaemias, dog, 100, 95

—, effect of compared with ATP and ADP, rat thoracic aorta, 100, 576

—, effect on withdrawal contractions, guinea-pig ileum, 101, 908

—, effects of cyclic AMP-dependent phosphorylation on action of receptor agonists of, 101, 311

—, enhancement by propentofylline during ischaemia, rat hippocampus, 100, 814

—, inhibition due to antagonized by theophylline but not 8-cyclopropyltheophylline, 100, 37

—, interactions with phorbol esters or lithium at neuromuscular junctions, frog, 100, 55

—, involvement of cyclic GMP in adenosine-induced vasodilatation, 100, 569

—, responsible for hepatic arterial 'buffer response', 100, 626

—, role in asthma, model for further study of, 100, 251

—, variation in responses to with age, urinary bladder and duodenum, rat, 100, 874

—, vasodilatation by, effect of L-NMMA, rabbit skeletal muscle, 100, 463

Adenosine analogues, action at uptake site by dihydropyridines enhances inhibition, 101, 97

Adenosine diphosphate, stimulation of cyclic GMP production in endothelial cells by pig, 101, 152

Adenosine receptor, agonists in mediation of formation of 1,4,5-inositol trisphosphate and metabolites, renal cortex, rat, 100, 63

—, in phrenic-diaphragm and hippocampus of rat, similar and of A₁-adenosine type, 101, 453

Adenosine A₂ receptors, activation of adenylyl cyclase in cell lines NG108-15 and NCB-20, 99, 309

Adenosine receptors, blocked by theophylline, consistency with time-dependent pattern of response attenuation for adenosine-induced hyperaemias, 100, 95

—, effects of cyclic AMP-dependent protein phosphorylation on, 101, 311

—, in coronary arteries, pig, 100, 487

Adenosine 5'-triphosphate, action on intracardiac neurones, guinea-pig, 100, 269

Adenylyl cyclase, activation of by prostacyclin and adenosine A₂ receptors in cell lines NG108-15 and NCB-20, 99, 309

—, activity modified by NaF and guanine nucleotides interacting with G_s and G_i, NG108-15 cells, 100, 223

—, developmental decrease in sensitivity of to Iso in myocardial membrane fractions, rat heart, 100, 138

—, effect on contractile reactivity of mesenteric and renal arteries, rat, 101, 859

—, human, effect of chronic β_1 -adrenoceptor antagonist treatment on, 101, 363

—, presence in endothelial and smooth muscle cells coupled to CGRP receptors, bovine, 99, 71

Adibendal (BM 14.478), haemodynamic profile of, 101, 686

Adrenal cortex, mediation of catecholamine-stimulated hydrocortisone secretion by β_1 -adrenoceptors in, 99, 709

Adrenal medulla, [³H]-nitrendipine binding sites in mitochondria and plasma membranes of, bovine, 101, 21

Adrenaline, involvement in antagonism of α -adrenoceptor-induced hypotension by β -blocker, rat, 101, 358

Adrenergic transmission, effect of prostaglandins on, atrial and ventricular preparations, guinea-pig, 99, 717

—, effects of Ca antagonists and Bay K 8644 on contractile responses to, 101, 961

Adrenoceptor, in circular muscle of guinea-pig stomach, 101, 809

α -Adrenoceptor, in mediation of contraction of spinal artery, 101, 200

—, mediating IP accumulation differs from those mediating cyclic AMP potentiation, 100, 3

α_1 -Adrenoceptor, alterations in responsiveness with age and disease, human erectile tissue, 101, 375

α_2 -Adrenoceptor, lack of effect of actions by pertussis toxin, rat, 100, 348

β -Adrenoceptor, in steroidogenesis in primary cultures of bovine adrenocortical zona fasciculata/reticularis cells, subclassification of, 99, 709

—, potentiation of α -stimulated cyclic AMP by noradrenaline partially inhibited by isomers of niflumipine, 100, 3

—, role in developmental decrease in sensitivity to isoprenaline in

foetal and neonatal heart, rat, 100, 138
 —, increase in calcium channel current by, single smooth muscle cell, coronary artery, pig, 100, 593

Adrenoceptor agonists, effect on non-infarcted hypertrophied muscles from rats with chronic myocardial infarction, 99, 572

α -Adrenoceptor antagonist, role of adrenaline and adrenocortical steroids on, 101, 358

β -Adrenoceptor antagonist, effect of adrenalectomy in antagonism of α -adrenoceptor-mediated hypotension by, rat, 101, 358

β -Adrenoceptor antagonists, influence on cold adaptation, rat, 99, 673

β -Adrenoceptor, cardiac, binding characteristics with age after adrenal demedullation, 99, 87

β -Adrenoceptor stimulants, effect on Sephadex-induced eosinophilia and lung hyperresponsiveness, rat, 101, 821

α - and β -Adrenoceptor blocking agent, in antiarrhythmic activity of labetalol, 100, 855

α_2 -Adrenoceptor heterogeneity, defined by 8-OH-DPAT, RU 24969 and methysergide, in rat cortex but not in human platelets, 99, 481

α_1 -Adrenoceptor-mediated inotropic responses, effect of inhibitors of protein kinase C and Na^+/H^+ exchange on, ventricular papillary muscle, rat, 100, 207

β -Adrenoceptor-mediated relaxations, occurrence through activation of β_1 -adrenoceptors, trachea, mouse, 99, 131

α_1 -Adrenoceptor subtypes, in noradrenaline contraction of thoracic aorta, rabbit, 101, 662

α - and β -Adrenoceptor subtypes, in mediation effects of catecholamines on fasting glucose and insulin concentrations, rat, 100, 699

Adrenoceptors, functional characterization of, submucosal plexus, guinea-pig, 101, 925
 —, responsiveness and number in global ischaemia, rat heart, 100, 641
 —, role in effects of lithium on blood glucose levels and insulin secretion, rat, 100, 283

α -Adrenoceptors, contractions in human subcutaneous arteries produced by activation of, 99, 31
 —, effect of K^+ channel openers on, in systemic pressor and regional vasoconstrictor responses, rat, 100, 557
 —, neuronal noradrenaline acts on, in inhibition of histamine-induced nasal congestion by methoxyphenamine, rat, 101, 394
 —, responses to noradrenaline in human subcutaneous arteries, 99, 31

α_1 -Adrenoceptors, effectiveness of activation of, in canine limb veins, 101, 387
 —, enhancement by neuropeptide Y of dihydropyridine-sensitive component in response to, rat mesenteric arterioles, 99, 389
 —, in influence of basal EDRF, rabbit, 99, 77
 —, in smooth muscle, sub-classification, 99, 197
 —, reduction of function in liver in senescence, rat, 101, 650

α_2 -Adrenoceptors, activation of inhibits non-cholinergic nerve stimulation induced bronchoconstriction, guinea-pig, 101, 269
 —, effect of neuropeptide Y on cardiovascular responses mediated by, rat, 100, 840
 —, effect on ^{45}Ca influx into synaptosomes, 101, 140
 —, effectiveness of activation of in canine limb veins, 101, 387
 —, identification with new antagonist [^3H]-RX821002, 100, 862
 —, imiloxan as a tool in classification of, 99, 560
 —, lack of evidence for differences between pre- and post junctional in periphery, 99, 97

α_{2A} -Adrenoceptors, evidence for heterogeneity of peripheral prejunctional, 101, 285

α_{2B} -Adrenoceptors, evidence for heterogeneity of peripheral prejunctional, 101, 285

α - and β -Adrenoceptors, in hypo- and hyper-thyroidism, rat aorta, 99, 541

β -Adrenoceptors, cardiac, effect of xamoterol on, rat, 99, 27
 —, developmental changes in effects of on Ca^{2+} channels, rat ventricular muscles, 99, 327
 —, developmental changes in, rat ventricular muscle, 99, 334
 —, in mediation of inhibition of spontaneous rhythmical contractions induced by ritodrine and salbutamol, rabbit jejunum, 101, 27
 —, increase of function in liver in senescence, rat, 101, 650

β_1 -Adrenoceptors, in mediation of smooth muscle relaxation, trachea, mouse, 99, 131

β_1 - and β_2 -Adrenoceptors, binding of metoprolol to, 99, 592
 —, quantitative autoradiographic study in trachea and lung, mouse, 99, 136

β -Adrenoceptors, atypical, evidence of in rat colon, 100, 831
 —, existence in rat distal colon, 101, 569

β_1 -Adrenoceptors, cardiac, human, and cardiac muscarinic and β -adrenoceptors, 101, 363
 —, effect of chronic β_1 -adrenoceptor antagonist on, 101, 363

β_3 -Adrenoceptors, evidence for in mediation of relaxation, distal colon, rat, 101, 569

Adrenocortical steroids, involvement in antagonism of α -adrenoceptor-induced hypotension by β -blocker, rat, 101, 358

AFD-19, effects on cardiac muscle, guinea-pig, 101, 803

AFD-21, effects on cardiac muscle, guinea-pig, 101, 803

Aging, decreased sensitivity of α_2 -adrenoceptors in, rat, 100, 547

Agmatine, antagonist of neuronal nicotinic receptors, 99, 207

Agonist affinity, detection of errors in estimation of, 101, 55

AH 21-132, inhibition of pulmonary airway eosinophil accumulation due to inhaled PAF by, guinea-pig, 99, 267

AH6809, in characterization of DP-receptors, 99, 13

Airway hyperreactivity, antigen challenge induces, sensitized guinea-pig, 99, 679

Alamethicin, effect on $\text{Na},\text{K},\text{ATPase}$ activity, myocardium, guinea-pig, 101, 337

[D-Ala²,NMePhe⁴,Gly-ol⁵]enkephalin, effect on single fibre, nicotinic, excitatory synaptic potential, hypogastric ganglion, mouse, 101, 505

Aldose reductase, effect on contractile response of detrusor to electrical field stimulation in streptozotocin-induced diabetes, rat, 101, 411
 —, impaired induction of ornithine decarboxylase activity in streptozotocin-diabetic rat prevented by, 101, 978

Alfentanil, antinociception induced by antagonized by naloxone and unaffected by naltrindole, rat, 100, 685

Alimentary muscle, effects of cholecystokinin octapeptide on, human, 100, 126

Alinidine, responses to cromakalim and pinacidil in smooth and cardiac muscle by use of, 100, 201

6-Allyl-2-amino-5,6,7,8-tetrahydro-4H-thiazolo-[4,5-d]azepine, see B-HT 920

(+)-N-Allylnormetazocine, discriminative stimulus properties not mediated by haloperidol-sensitive recognition site, 99, 145

Alpha-chloralose, spinal contribution to depression of reflexes, rat, 101, 563

Alphaxalone, effect on axonal currents, olfactory cortex, rat, 101, 217
 —, spinal contribution to depression of reflexes, rat, 101, 563

Alprazolam, differential effects on benzodiazepine binding and GABA_A -receptor function, 101, 839

Althesin, in anaesthetic suppression of transmitter actions in neocortex, 101, 61

Alveolar macrophages, involvement of neurokinin receptors in activation of, guinea-pig, 100, 417

Amiloride, effect on inotropic responses, ventricular papillary muscle, rat, 100, 207

DL-(E)-2-Amino-4-methyl-5-phosphono-3-pentenoic acid, see CGP 37849

D-2-Amino-5-phosphonopentanoic acid, inhibits action of oxiracetam on field potentials, hippocampus, rat, 99, 189

Aminophylline, effect on Sephadex-induced eosinophilia and lung hyper-responsiveness, rat, 101, 821
 —, inhibition of pulmonary airway eosinophil accumulation due to inhaled PAF by, guinea-pig, 99, 267
 —, facilitation of regenerative ACh release by, motor nerve, mouse, 101, 793

4-Aminopyridine, and effects of cromakalim on smooth muscle, guinea-pig bladder, 99, 779
 —, effect on tracheal smooth muscle cells, dog, 100, 507
 —, study of adrenergic-cholinergic interactions in left atria using, rabbit, 99, 661

4-Aminoquinoline, in neurosecretion at motor endplates, mammal, 100, 487

8-Aminovaleric acid, inactive as blocker of (–)-baclofen-induced effects in synaptic processing of somatosensory information in S1 cortex, cat, 100, 689

Amiodarone, effect on ischaemia-induced myocardial damage, canine heart, 99, 577

Anaesthetics, comparison of spinal effects of injectable on nociceptive reflexes, rat, 101, 563
 —, inhibit Na^+/K^+ current in sensory neurones, 101, 190

Anaplyaxis, active, blockage by WEB 2086, 100, 217

Angiotensin, comparison of vasoconstrictor and vasodilator responses to, superior mesenteric vascular bed, rat, 99, 427

Angiotensin I, in local formation of angiotensin II, rat aorta, 100, 237

Angiotensin II, local formation of, effect of endothelium, rat aorta, 100, 237

Angiotensin converting enzyme, effect on bradykinin-induced bronchoconstriction, guinea-pig, 101, 77
 —, extrapulmonary activity of, intact tissue preparations, 100, 49
 —, inhibitors of, 101, 121
 —, inhibitors potentiate bronchoconstriction induced by substance P, guinea-pig, 100, 502

- , negative role in regulation of response to aerosolised substance P on lung resistance, guinea-pig, 100, 69
- Anion secretion**, mediation by different receptors of prostanoid stimulation of, stomach and ileum, guinea-pig, 101, 889
- ANP**, contribution of ventricles to circulating level of, 99, 701
- , refractoriness of gravid uterus to tocolytic and biochemical effects of, rat, 100, 341
- Anti-arrhythmia**, electrophysiological alterations of combination of lidocaine and sotalol, benefits of, 99, 124
- Antiarrhythmic actions**, effect of nicorandil on, Purkinje fibre, dog, 99, 119
- Antiarrhythmic agents**, class III group, effect on ischaemia-induced myocardial damage, canine heart, 99, 577
- Antiarrhythmic drug**, pirmenol, 99, 815
- Anti-arrhythmic drugs**, effects on established ventricular fibrillation, 100, 530
- Anticholinesterase**, effect on latencies of action potentials in skeletal muscle, mouse, 99, 721
- Anticholinesterases**, effect on nicotinic receptor ion channels, muscle endplate, mouse, 101, 349
- Anti-convulsant**, block of GABA currents in thalamic neurones, 100, 807
- Anticonvulsants**, differential effects of convulsants and on thalamic neurones, 100, 800
- Antigen challenge**, induces pulmonary airway eosinophil accumulation and airway hyperreactivity, sensitized guinea-pig, 99, 679
- Anti-inflammatory agents**, chiral inhibitors of 5-lipoxygenase, 101, 501
 - , interaction with pyrogenic actions of interleukin-1, 100, 542
 - , resulting from mast cell degranulation, rat, *in vivo*, 99, 350
- Antinociception**, antagonism of swim-stress-induced by naltrindole, rat, 100, 685
- , atropine-induced, 101, 49
- , naltrexone-insensitive, induced by α -methyldopa, rat, 99, 467
- , stress-induced, role of vasopressin in, 99, 243
- Antinociceptive actions**, mediated by opioid receptors, dorsal horn, rat, 101, 477
- Anxiety**, characterization of MDL 73005EF as a 5-HT_{1A} ligand and effects on animal models of, 99, 343
 - , connection between adverse effects on function of inverse agonist, FG7142, on rat cardiac function, 99, 441
- Apomorphine**, behavioural supersensitivity to, by withdrawal of chronic haloperidol treatment, rat, 99, 509
- Arachidonic acid**, renal vascular responsiveness to, in experimental diabetes, 100, 336
- Arginine**, effects on vascular tone of isolated blood vessels and endothelial cells, 101, 145
 - , prevention of generation of, by glutamine inhibition of EDRF release, endothelial cells, 101, 237
- L-Arginine**, administered to inhibit endothelium-derived NO formation effect on mucosa, rat, 99, 607
 - , effect on NANC relaxations of mouse anococcygeus, 99, 602
- L-Arginine methyl ester**, effect on vascular tone of isolated blood vessels and endothelial cells, 101, 145
- L-Arginine:nitric oxide pathway**, characterization of, human platelets, 101, 325
- Arrhythmias**, effects of PAF during, guinea-pig, 101, 734
- Arteriovenous anastomoses**, effect of elgodipine on, pig, 99, 355
- Arthritis**, adjuvant, effect of 5-HT on articular sensory receptors in, rat, 101, 715
- Arthropod saliva**, as a resource of novel pharmacological activities, 101, 932
- Aspirin**, in collagen-induced platelet adhesion/aggregation response and release of 5-HT, cat, 99, 631
- Asthma**, bradykinin generation in, guinea-pig, 101, 739
 - , inhibition of by prophylactic drugs and specific PAF receptor antagonists, guinea-pig, 99, 396
 - , therapeutic effects of nedocromil sodium by inhibition of antigen-induced release of leukotrienes and histamine, human lung, 100, 247
- AT-125**, effect of renal haemodynamic responses to CGP 22979, rat, 99, 15
- Atherosclerosis**, attenuation of responses to EDRF by low-density lipoproteins, 100, 21
- ATP**, as co-transmitter with noradrenaline at vascular neuroeffector junction, 99, 279
 - , antagonism by nifedipine of contraction and Ca²⁺-influx evoked by, bladder, guinea-pig, 100, 370
 - , cotransmitter with noradrenaline in sympathetic nerves to hepatic artery, rabbit, 99, 835
 - , effect of suramin on in PC12 phaeochromocytoma cells, 101, 224
 - , effect of suramin on responses of in urinary bladder and taenia coli, guinea-pig, 99, 617
 - , effect on thoracic aorta compared with adenosine and ADP, rat, 100, 576
 - , in onset of ouabain inhibition of Na,K-ATPase, guinea-pig myocardium, 101, 337
 - , in response to 5-HT, urinary tract, rabbit, 101, 212
 - , ontogeny of responses to, rat urinary bladder and duodenum, 100, 874
 - , role as fast excitatory transmitter, guinea-pig urinary bladder, 100, 619
- ATP analogues**, mediation by stimulation of P_{2X}-receptors, rabbit ear artery, 101, 640
- ATP release**, neuropeptide Y neuromodulates co-transmission by inhibition of, vas deferens, guinea-pig, 100, 457
- ATP-sensitive K⁺ channels**, similarity of ability of pinacidil to increase ⁸⁶Rb efflux via to cromakalim, canine mesenteric artery, 100, 143
- ATP-sensitive potassium channels**, effects of pinacidil, RP 49356 and nicorandil on, 99, 487
- Atria**, isolated, changes in contractile rate and force in response to noradrenaline or field stimulation, influence by acute or chronic morphine treatment, 99, 247
- Atrial natriuretic factor**, actions on hepatic arterial and portal vascular beds, dog, 99, 810
 - , cyclic GMP and vasodilatation induced by, rat kidney, 99, 364
 - , effect of intracisternal injection of ACh on, 100, 471
- Atriopeptin III**, action on renal function in chronic renal failure, rat, 99, 317
- Atropine**, effect on nociceptive system, 101, 49
 - , -resistant relaxation induced by high K⁺, iris dilator muscle, rat and pig, 100, 401
- Autoinhibition**, in vascular neuroeffector junction, ATP and noradrenaline as co-transmitters, 99, 279
- Azapropazone**, as an effective inhibitor of neutrophil migration, swine, 99, 233
 - , effect on neutrophil migration in regional myocardial ischaemia/reperfusion injury, rabbit, 100, 379

B

- Baclofen**, effect of intracerebroventricular administration on operant feeding in satiated pig, 101, 559
 - , effect on histamine-induced inositol phosphate formation, guinea-pig cerebellum, rat and guinea-pig cortex, 100, 867
 - , effect on transmission in neonatal rat motoneurones, 99, 413
 - , electrophysiological characterization of at GABA_B receptors on neurones, rat brain, 101, 949
 - , in synaptic processing of somatosensory information, cortex, cat, 100, 689
- R-(—) and S-(+)-Baclofen**, effect on neurogenic vasopressor response, rat, 100, 365
- Barbiturates**, potency for binding to *Torpedo* acetylcholine receptor, 101, 710
- Barium**, in inhibition of Na⁺-K⁺ pump activity, peritoneal mast cells, rat, 100, 453
- Baroreceptor reflex**, protective effect of beraprost sodium against deterioration of, dog, 99, 91
- Baroreflex**, ethanol inhibition of, role of brainstem GABA receptors, 101, 773
- Bay K 8644**, a new intracellular site of action, 101, 15
 - , effect on responses to electrical field stimulation, β , γ -methylene ATP and ACh, urinary bladder, rat, 101, 494
 - , interactions with endothelium: comparison with palmitoyl carnitine, rat aorta, 100, 241
 - , role of Na-H exchange in inotropic action of, guinea-pig atria, 100, 717
- Bee venom**, anti-inflammatory activity of, results from mast cell degranulation *in vivo*, 99, 350
- Benidipine**, mechanisms of effects on Ca current, ventricular cells, guinea-pig, 100, 669
- Benserazide**, effect on distribution and metabolism of levodopa, rat, 100, 743
- Benzeneacetamidopiperidine analogues**, as novel agonists for κ -opioid receptor, 101, 944
- Benzodiazepine**, properties of imidazobenzodiazepine, a partial agonist of, 101, 753
- Benzodiazepine inverse agonist**, adverse effects on rat cardiac function *ex vivo*, 99, 441
- Benzodiazepine inverse agonists**, effect of acute and chronic treatment with on acetylcholinesterase activity, mouse brain, 101, 599
- Benzodiazepines**, and thromboxane synthesis in human platelets, 101, 920

—, effect of nitrendipine on seizures during withdrawal from chronic treatment with and development of tolerance to, mouse, 101, 691

Benzotropine, effects on renal sympathetic axons of acute 6-hydroxydopamine treatment in combination with, dog, 99, 655

N- α -Benzoyl-L-arginine ethyl ester, effect on vascular tone of blood vessels and endothelial cells, 101, 145

Beraprost sodium, effect against deterioration of baroreceptor reflex after transient global cerebral ischaemia, dog, 99, 91

—, effect on nigrostriatal and mesolimbic dopamine systems, rat, 99, 509

B-HT920, effect on non-cholinergic nerve-mediated bronchoconstriction, guinea-pig, 101, 269

B-HT 933, elicits contractions in human subcutaneous arteries in presence of prazosin, 99, 31

—, in endotoxin-induced impairment of vascular responses, rat, 101, 913

Bicuculline, comparison with (+)-hydrastine as a potent antagonist at mammalian GABA_A receptors, 99, 727

—, in synaptic processing of somatosensory information in S1 cortex, cat, 100, 689

Biliary elimination, preferential, of FPL 63547, a novel inhibitor of angiotensin-converting enzyme, rat, 100, 90

Binding sites, characterization of for inositol 1,4,5-trisphosphate, airway smooth muscle, 99, 297

Binding sites, cerebellar, requirements for binding to, 101, 319

BK₂, BK₁ receptors, effect of various peptides on, dog carotid and renal arteries, 99, 445

Blood flow, regional, effect of neuropeptide Y on, 99, 340

Blood flow, regional, effect of EMD 52692 on, pig, 101, 605

—, effect of nimodipine on, pig, 100, 277

Blood pressure, effect of endothelin on, 100, 107

BM 13.177, effect on bronchoconstrictor effect of inhaled PGD₂, guinea-pig, 100, 761

BM 14.478, see adibendan

BMY 7378, effect on e.p.s.p., rat hippocampus, 101, 171

BN 52021, attenuates plasma leakage in guinea-pig airways, 101, 739

—, effect on changes induced by endotoxin, mice, 99, 499

Body weight, connections between β -adrenoceptor antagonists, cold acclimatization and, rat, 99, 673

Bradykinin, angiotensin converting enzyme and neutral endopeptidase degrade, airway lumen, guinea-pig, 101, 77

—, changes in tension in response to additions of, interlobar renal arteries, 101, 89

—, dependence on cyclo-oxygenase pathway to produce PGH₂ in elicitation of vasoconstriction, canine veins, 99, 461

—, haemodynamic responses to, effects of L-NAME, rat, 101, 632

—, in depolarization of primary afferent nerves, rat spinal cord, 100, 656

—, inactivation of by angiotensin converting enzyme in endothelium, 100, 49

—, induced vasoconstriction of mesenteric arteries, rat, 101, 344

—, role of epithelium in modulating responses of trachea induced by, guinea-pig, 99, 762

—, stimulation of cyclic GMP production in endothelial cells by, pig, 101, 152

—, structure-activity studies on, 99, 445

Bradykinin antagonist, in blockage of capsaicin-induced ear inflammation, mice, 99, 516

Brain, endogenous inhibitor of endothelium-dependent relaxation in, rabbit, 101, 865

Brainstem neurones, non-NMDA antagonism by pilanthotoxin *in vivo*, brainstem, rat, 101, 968

Bretymium, effect on established ventricular fibrillation, 100, 530

BRL 24924, induces increase in EEG-energy, rat, 101, 281

Bronchoalveolar lavage fluid, eosinophil accumulation from exposure to PAF in, guinea-pig, 99, 267

Bronchoconstriction, effects of morphine DALDA and B-HT920 on non-cholinergic nerve-mediated, guinea-pig, 101, 269

—, mechanism of potentiation by gallamine, guinea-pig, 99, 582

—, role of prostanoid receptors in, guinea-pig, 100, 761

—, substance P induced, potentiated by angiotensin converting enzyme inhibitors, guinea-pig, 100, 502

—, suppression by neuropeptide Y of capsaicin-sensitive sensory nerve-mediated, guinea pig, 99, 473

Bronchus, human, contractile activity of endothelin on, 100, 168

Brown adipose tissue, effect of pindolol on, rat, 99, 673

Buflofemid, effect on vascularisation and fibre type of skeletal muscle subjected to limited blood supply, rat, 99, 786

Büllbring, E., FRS, obituary, 101, 771

β -Bungarotoxin, blockade of acetylcholine release by, motor nerve terminals, mouse, 100, 301

Buspirone, comparison with MDL 73005EF as a 5-HT_{1A} selective ligand, effect on models of anxiety, 99, 343

—, effect of 5-HT_{1A} receptor antagonist action of in von Bezold-Jarisch reflex, rat, 100, 757

—, effect on hippocampus, rat, 101, 171

—, role of 5-HT and dopamine systems in eating induced by, 99, 519

Butanedione monoxime, effect on neuromuscular transmission, 100, 467

Buthionine sulphoximine, effect on renal haemodynamic responses to CGP 22979, rat, 99, 15

BW 245C, hypotensive actions inhibited by BW A868C in bronchoconstriction, 100, 761

BW755C, effect on toxicity and vasopermeability induced by endotoxin, mice, 99, 499

BW A4C, in bronchoconstrictor effect of inhaled PGD₂, guinea-pig, 100, 761

BW A868C, effect on bronchoconstrictor effect of inhaled PGD₂, guinea-pig, 100, 761

C

Ca²⁺, changes in trans-sarcolemmal entry mediated by PAF receptors, guinea-pig atria, 100, 305

—, reduction by nitroglycerin, coronary artery, pig, 101, 545

—, role in release of endothelial nitric oxide and control of vascular tone, 101, 489

—, increased activation of protein kinase C contractile responses in presence of, diabetic rat, 101, 465

⁴⁵Ca accumulation, receptor-mediated inhibition of into synaptosomes, 101, 140

Ca-activated current, effect of ryanodine and caffeine on, ventricular myocytes, guinea-pig, 101, 399

Ca-activated K channel, affected by tetraethylammonium and 4-aminopyridine, trachea, dog, 100, 507

—, effects of calmodulin on, pregnant rat myometrium, 100, 353

Ca²⁺-activated K⁺ channels, inhibition of Ca²⁺ influx by pinacidil reduces the opening of, canine mesenteric artery, 100, 143

Ca²⁺-antagonist, inhibits T-type Ca²⁺ channels in hippocampal CA1 pyramidal neurones, rat, 100, 705

Ca²⁺ antagonists, effects on central 5-HT function, rat, 99, 41

—, alteration of in presence of blood gas abnormalities, 100, 102

—, effect on contractile responses to adrenergic responses to adrenergic responses, rabbit ear, 101, 961

Ca²⁺ channel antagonist, (–)-daurisoline, 101, 45

—, effect on benzodiazepine withdrawal and tolerance development, 101, 691

—, interaction of spironolactone at binding site of, 101, 6

Ca²⁺ channels, activation by ATP eliciting contraction, bladder, guinea-pig, 100, 370

—, developmental changes in modulatory effects of β -adrenoceptor and cholinceptor agonists on, rat ventricular muscle, 99, 327

—, developmental changes in rat ventricular muscle, 99, 334

—, effect of endothelin on in guinea-pig cardiac cells, 99, 437

—, in mediation of endothelium-dependent vasodilatation, mesenteric artery, rat, 100, 427

Ca current, mechanisms of effects of benidipine on, ventricular cells, guinea-pig, 100, 669

—, interaction with activated G proteins, rat, 99, 629

⁴⁵Ca fluxes, effects of PAF on, atria, guinea-pig, 100, 305

Ca²⁺ ionophore, nitric oxide formation by in neural cells, 101, 722

Ca²⁺ mobilization, intracellular, effect of chloroquine, 101, 133

Ca transient, increased by carbachol, dog tracheal muscle, 100, 41

Ca²⁺ uptake, effects of (–)-daurisoline on, presynaptic nerve terminals, 101, 45

Caffeine, effects on Ca-activated current, ventricular myocytes, guinea-pig, 101, 399

—, relaxant action and failure to release Ca²⁺, pregnant rat myometrium, 99, 261

—, stimulation by, is dose- and concentration-dependent, 100, 435

Calcium, antagonism of magnesium-induced high affinity state of hepatic vasopressin receptor for agonist interaction, 100, 5

—, effect of cocaine on intracellular, ventricular myocardium, ferret, 101, 679

—, effect of isoprenaline on cytoplasmic level, 100, 677

—, failure of caffeine to release, pregnant rat myometrium, 99, 261

—, in inhibition of Na⁺-K⁺ pump activity, peritoneal mast cells, rat, 100, 453

—, in phospholipase activities in human lung, 100, 447

Calcium agonist, RS 30026, 99, 687

Calcium channel, agonist and antagonist enantiomers of dihydropyridine act a different sites on, vascular muscle, 101, 3

- , role in excitatory mechanical action of purinergic responses, urinary bladder, rat, 101, 494
- , regenerative ACh release recruited by, modulated by nicotinic receptors and K⁺ channels, motor nerve, mouse, 101, 793
- , RS 30026 as potent and effective agonist of, 99, 687
- Calcium channel currents**, effect of RS 30026 on, embryonic chick myocytes, 99, 687
- , effects of pinaverium on, smooth muscle cells, rabbit jejunum, 99, 374
- , increase by stimulation by β -adrenoceptor agonists, single cell, coronary artery, pig, 100, 593
- Calcium channel (N-type)**, effect of conotoxin on, 101, 437
- Calcium currents**, differential effects of succinimide derivatives on, thalamus, 100, 800
- , effect of capsaicin, dorsal root ganglion cells, rat, 101, 423
- Calcium entry blockers**, potentiation by neuropeptide Y induced stimulation of α_1 -adrenoceptors, rat mesenteric arterioles, 99, 389
- Calcium inward current**, effect of somatostatin on, guinea-pig atria, 99, 587
- , increase of positive inotropic and chronotropic effects by CGRP by increase of, 100, 27
- Calcium mobilization**, effect of MK-886 on, 100, 15
- Calcium responsiveness**, effect of cocaine on, ventricular myocardium, ferret, 101, 679
- Calcium sensitising effect**, of ORG30029 in skinned cardiac muscle, 100, 843
- Calcium transport**, Bay K 8644 as modifier of, site of action 101, 15
- Calcitonin gene-related peptide**, action on vascular endothelial and smooth muscle cells, bovine, 99, 71
- , electrophysiological and mechanical effects of, guinea-pig atria, 100, 27
- , inhibition of carbachol and 5-HT-induced contraction in airways, rat, 101, 193
- , responsiveness of coronary artery rings to modified by hypoxia or simulated myocardial ischaemia, sheep, 99, 774
- , α -, human, synergistic internal carotid vasodilator effects of, conscious rat, 99, 830
- Calmodulin**, effects of antagonists of on calcium-activated potassium channels in pregnant rat myometrium, 100, 353
- L-Canavanine**, effect on vascular tone of blood vessels and endothelial cells, 101, 145
- Capsaicin**, action on peripheral nociceptors in neonatal rat tail, 99, 323
 - , action on peripheral nociceptors, neonatal spinal cord-tail, rat, 101, 727
 - , bronchoconstriction induced by, enhanced by captopril, guinea-pig, 100, 502
 - , cerebrovascular responses to *in vitro* and *in situ*, 100, 312
 - , dual effects on responses to field stimulation, ear artery, rabbit, 99, 152
 - , effect of ruthenium red on oedema formation in blood flow induced by, 99, 7
 - , effect on plasma glucose and catecholamine levels during stress, rat, 100, 523
 - , effect on voltage-gated Ca currents and Ca signals in dorsal root ganglion cells, rat, 101, 423
 - , in pre-treatment to deplete sensory neuropeptides, effect on mucosa, rat, 99, 607
 - , influence of α -sensitive afferent neurones on acid secretory responses, stomach, rat, 100, 491
 - , inhibitory effect of DAMGO on cholinergic constriction in main bronchii after pretreatment by, guinea-pig, 100, 131
 - , modulation of neurogenic inflammation by BK₁ and BK₂ receptors, 99, 516
 - , vascular responses to, 100, 535
- Captopril**, as binding inhibitor of lung angiotensin converting enzyme, 101, 121
 - , effect on bradykinin-induced bronchoconstriction, guinea-pig, 101, 77
 - , effect on pulmonary inflation pressure induced by bronchoconstrictor agents, guinea-pig, 100, 502
 - , in inhibition of angiotensin-converting enzyme in response to aerosolised substance P, lung, guinea-pig, 100, 69
 - , inhibitor of angiotensin converting enzyme, effects of in intact tissue preparations, 100, 49
 - , lack of effect on sensitivity to vasoactive intestinal peptide following epithelium removal, airway smooth muscle, guinea-pig, 100, 73
- Carbachol**, effect of stimulation of oxyntic cell with after systemic neonatal pretreatment with capsaicin, stomach, rat, 100, 491
 - , enhancement of [³H]-inositol phosphates in presence of, human, 100, 37
- , role of activation of potassium conductance in antagonism of of positive inotropic responses to α - and β -adrenoceptor stimulation, 99, 661
- Carbamylcholine**, contraction induced by, inhibited by calcitonin gene-related peptide, 101, 193
- Cardiac depression**, mechanisms induced by phorbol myristate acetate, heart, rat, 100, 826
- Cardiac hypertrophy**, release of ANP in, rat myocardium, 99, 701
- Cardiac muscarinic receptors**, affinity of hexacyclium derivatives for, 100, 150
- Cardiac muscle**, effect of fenbufen on clenbuterol-induced hypertrophy of, rat, 101, 835
- Cardiac output distribution**, effect of neuropeptide Y on, pithed rat, 99, 340
- Cardiac tension**, effect of benzodiazepine inverse agonist, FG7142, rat, 99, 441
- Cardiac vagal motoneurones**, role of 5-HT_{1A}-receptors in von Bezold-Jarisch reflex, rat, 100, 757
- Cardiovascular responses**, to verapamil and nifedipine in hypoventilated and hyperventilated rat, 100, 102
- Carrageenin**, kinins in inflammatory exudates induced by, 101, 418
 - , role of PAF in inflammatory responses to, mouse, 99, 168
- Catecholamine**, adrenal, effect of capsaicin-sensitive sensory fibres on response of, rat, 100, 523
 - , mediation by β_1 -adrenoceptors of hydrocortisone secretion stimulated by, bovine adrenal cortex, 99, 709
 - , receptors involved in mechanical responses to in circular muscle treated with meclofenamate, guinea-pig, 101, 809
- Catecholamines**, action on membrane currents in single cells, coronary artery, pig, 100, 593
 - , adrenal medullary, effect on cardiac β -receptor binding characteristics unaffected by age, 99, 87
 - , effect of capsaicin-sensitive sensory nerves on levels of during 2-DG stress, rat, 100, 523
 - , in cold adaptation, rat, 99, 673
 - , role of α - and β -adrenoceptors in mediation of effects of in glucose homeostasis, rat, 100, 699
- Catecholamine secretion**, effect of diadenosine polyphosphates on, chromaffin cells, 100, 360
 - , effect of quinine on, bovine cultured chromaffin cells, 99, 548
- Cephalic vein**, effectiveness of α_1 - and α_2 -adrenoceptor activation, dog, 101, 387
- Cerebellum**, GABA inhibition of histamine-induced IP formation in, 100, 867
 - , rat, [¹²⁵I]-endothelin-1 binding sites in, 101, 319
- Cerebral cortex**, development of tolerance to effects of vagabatrin on GABA release from, rat, 100, 324
 - , GABA inhibition of histamine-induced IP formation in, 100, 867
- Cerebral ischaemia**, effect of propentofylline on extracellular purines and excitatory amino acids during, rat hippocampus, 100, 814
- Cerebrovascular responses**, to capsaicin *in vitro* and *in situ*, 100, 312
- CGP 18137**, accumulation in renal tissue following administration of prodrug CGP 22979, 99, 15
- CGP 37849**, novel and potent competitive NMDA receptor antagonist with oral activity, 99, 791
- CGP 39551**, novel and potent competitive NMDA receptor antagonist with oral activity, 99, 791
- Chemotaxis**, inhibition of neutrophil and eosinophil induced by nedocromil sodium and sodium cromoglycate, 99, 798
- Chiral inhibitors**, of 5-lipoxygenase with anti-inflammatory activity, 101, 501
- Chloride conductance, membrane**, mediated by GABA_A receptors in paratracheal neurones, rat, 100, 261
- 2-Chloroadenosine**, induction of vagally-mediated and atropine-resistant bronchomotor responses, guinea-pig, 100, 251
- Chloroethylclonidine**, in classification of α_1 -adrenoceptors in smooth muscle, 99, 197
- Chloroquine**, inhibitor actions on mouse diaphragm, 101, 133
- Cholecystokinin-octapeptide (CCK)**, effect on depressant effect of (+)-fenfluramine on food intake depends on activity of, rat, 99, 65
- Cholecystokinin octapeptide**, effect on isolated alimentary muscle, human, 100, 216
- Cholecystokinin receptors**, cholecystokinin 8S-evoked release of dopamine mediated by, nucleus accumbens, rat, 99, 845
- Cholinergic nerves**, effect of opioids on, guinea-pig, 100, 131
- Cholinergic nerves, pulmonary**, prejunctional M₂ muscarinic receptors in, rat, 101, 73
- Cholinergically-mediated responses**, inhibition by conotoxin, 101, 437
- M-Cholinoreceptor**, mediates inositol phosphate content in papillary muscle, 101, 829
- Cholinoreceptors, prejunctional**, ACh release at neuromuscular junction

affected by phenonium, 100, 441

—, spontaneous release of acetylcholine, motor nerve terminals, rat, 100, 441

Chondrocytes, co-operation between interleukin-1 and fibrinolytic system in degradation of collagen by articular, 100, 631

Chromaffin cell, lack of specific binding sites for [³H]-nitrendipine in, adrenal medulla, bovine, 101, 21

Chromaffin cells, effect of diadenosine polyphosphates on catecholamine secretion from, 100, 360

—, effect of quinine on release of catecholamines from, 99, 548

—, protein kinase C related compounds and, 101, 521

Chronic amiodarone feeding, differences in hepatic drug accumulation and enzyme induction after, rat, 99, 35

Chronic renal failure, action of atriopeptin III on, rat, 99, 317

CI-977, novel agonist for κ -opioid receptor, 101, 183

Cigarette smoke, vascular responses to, 100, 535

Ciguatoxin, enhancement of quantal transmitter release, frog motor nerve terminals, 99, 695

Cirazoline, endotoxin impaired responsiveness to, 101, 913

CL242,817, as binding inhibitor of lung angiotensin converting enzyme, 101, 121

Clenbuterol, prostaglandin inhibition and muscle hypertrophy, 101, 835

Clonidine, effect on contractile reactivity of mesenteric and renal arteries, rat, 101, 859

—, effect on opioid withdrawal response, ileum, guinea-pig, 101, 958

—, in endotoxin-induced impairment of vascular responses, 101, 913

Clozapine, effects of dopamine release and metabolism, nucleus accumbens and striatum, rat, 100, 774

CNQX, effect of dorsal root-, NMDA-, kainate- and quisqualate-mediated depolarization of motoneurones, rat, 100, 850

Cocaine, actions on dopaminergic neurones, rat, 99, 731

—, actions on nucleus accumbens, neurones, rat, 99, 736

—, differential effect of on tritium overflow from mouse vasa deferentia, and rat cortex slices, 101, 762

—, effects on intracellular Ca^{2+} handling and myofilament Ca^{2+} responsiveness, ventricular myocardium, ferret, 101, 679

Cold adaptation, influence of β -adrenoceptor antagonists on, rat, 99, 673

Collagen, interaction between interleukin-1 and fibrinolytic system in degradation of by articular chondrocytes, 100, 631

Colon, differences in control of descending inhibition in, 101, 1011

—, purinoceptors mediating contraction in, rat, 100, 753

—, species-related differences in characterization of 5-HT₃ receptors in, 101, 591

Colonic mucosa, effect of ethanol on eicosanoid synthesis by, human, 99, 289

Colony-stimulating factor, inhibition by MK-886 on neutrophils primed with and stimulated with PAF, 100, 15

Compound 48/80, anti-inflammatory activity resulting from mast cell degranulation *in vivo*, rat, 99, 350

ω -**Conotoxin**, potent inhibitor of sympathetic neurogenic responses, mesenteric artery, rat, 100, 180

ω -**Conotoxin GVIA**, effect on automatic neuroeffector transmission, 101, 437

Convulsants, differential effects of anticonvulsants and, on thalamic neurones, 100, 800

Coronary artery, action of noradrenaline on, rat, 100, 552

—, adenosine receptors in, pig, 100, 483

—, contribution of 5-HT to reductions in flow leading to myocardial ischaemia in presence of disease, 100, 153

—, effects of CGRP and NPY on, sheep, 99, 774

Coronary arteries, sheep, modification of ischaemic-induced contraction in, 100, 407

Coronary blood flow, effect of theophylline on hyperaemias resulting from, dog, 100, 95

Corpus cavernosum, changes in α -adrenoceptor responsiveness with age and disease, 101, 375

Corpus striatum, electrophysiological characterization of agonists at GABA_A receptors in, 101, 949

Cotransmission, noradrenergic-purinergic, hepatic artery, rabbit, 99, 835

—, presynaptic α_2 -autoinhibition in vascular neuroeffector junction by ATP and noradrenaline, 99, 279

Cromakalim, action of in comparison with action of diazoxide and minoxidil sulphate, blood vessels, rat, 100, 605

—, action on potassium membrane conductance, heart myocytes, frog, 100, 581

—, antagonism by glibenclamide in rat uterus, 101, 901

—, antagonism by glibenclamide of vasodepressor effects of, dog, 100, 413

—, bronchodilator properties of, guinea-pig, 100, 289

—, characterization of responses to in smooth and cardiac muscle by use of selective antagonists, 100, 201

—, cytoplasmic calcium and relaxation of coronary arterial smooth muscle by, 101, 157

—, effect of ATP-sensitive potassium channels in insulin-secreting cells, 99, 169

—, effects on contraction and ⁸⁶Rb efflux, canine mesenteric artery, 100, 143

—, K⁺ channel blockers and effects of on smooth muscle, guinea-pig bladder, 99, 779

Cromoglycate, inhibition of pulmonary airway eosinophil accumulation due to inhaled PAF by, guinea-pig, 99, 267

Crotoxin, blockade of acetylcholine release by, at motor nerve terminals, mouse, 100, 301

CV-6209, as competitive antagonist against PAF-evoked platelet aggregation in plasma, rabbit, 100, 163

Cyclic AMP, effect of thermal trauma on, mouse myocardium, 101, 263

—, effects of phosphodiesterase inhibition on hydrolysis of, rat cerebral cortex, 99, 47

—, effect on muscarinic antagonism, guinea-pig ventricular myocardium, 99, 401

—, in evidence for 5-HT receptor in human atrium, 100, 879

—, inhibition of accumulation by sumatriptan, dog saphenous vein, 99, 219

—, inhibition of agonist-induced inositol phospholipid turnover by, 100, 646

—, potentiation of α -adrenoceptor-stimulated by noradrenaline partially inhibited by isomers of nulgipine, 100, 3

—, production in receptor-mediated inhibition of ⁴⁵Ca accumulation into synaptosomes, 101, 140

—, quantity synthesized compared with density of β -adrenoceptors in thyroid states, 99, 541

—, role in mediation of ACh release, motor nerve endings, frog, 101, 311

Cyclic AMP/cyclic GMP ratio, effect of thermal trauma on, myocardium, mouse, 101, 263

Cyclic AMP-dependent protein kinase activity ratio, role of Org10325, 100, 735

—, effect on ACh release and action of adenosine, motor nerve endings, frog, 101, 311

Cyclic endoperoxides, in bradykinin-induced vasoconstriction, mesenteric artery, rat, 101, 344

Cyclic GMP, action synthesized by spasmogenic agents and relation to mechanical responses, dog tracheal smooth muscle, 100, 41

—, effect of eicosapentaenoic acid treatment on agonist-stimulated, 99, 176

—, effect of thermal trauma on, myocardium, mouse, 101, 263

—, effect on synthesis of IP₃, rabbit aorta, 99, 536

—, increase in endothelial cells in response to EDRF, inhibition by a phorbol ester, 99, 565

—, involvement in adenosine-induced age dependent vasodilatation, 100, 569

—, potassium-stimulated release of, cerebellar cortex, 101, 8

—, stimulation of production in endothelial cells, pig, 101, 152

Cyclic nucleotide phosphodiesterase inhibitor, Org10325, cardiac and vascular tissue, 100, 735

Cyclic nucleotides, changes in in response to inhibitory NANC field stimulation, smooth muscle, guinea-pig, 100, 329

Cycloheximide, pretreatment with, enhances release of prostacyclin in response to ATP and bradykinin, endothelium, bovine, 101, 799

Cyclo-oxygenase, differential regulation of pathways of arachidonate metabolism in leukocytes, rat, 101, 128

—, in modulation of bradykinin-induced responses of trachea, guinea-pig, 99, 762

Cyclo-oxygenase inhibitors, abolish vasoconstrictor effect of bradykinin, mesenteric arteries, of rat, 101, 344

Cysteine, effect on rapid tolerance to hypotensive effects of glyceryl trinitrate, rat, 99, 825

Cytidine, effect of infusion into nucleus accumbens, striatum, dorsal hippocampal formation or motor thalamus on locomotor activity, 99, 273

Cytochrome oxidase, in influence of β -adrenoceptors on cold adaptation, rat, 99, 673

Cytoplasmic calcium concentration, changes in during exposure to simulated ischaemia, myocardium, rat, 100, 477

D

DAMGO, effect of circulatory response to simulated haemorrhage,

rabbit, 100, 421

4-DAMP, analogues reveal heterogeneity of M_1 muscarinic receptors, 100, 395

4-DAMP methobromide, as a selective muscarinic antagonist, 99, 622

Dapsone, effect on Sephadex-induced eosinophilia, rat, 101, 821

(-)-**Daurisoline**, effect on Ca^{2+} channels, presynaptic nerve terminals, 101, 45

Debrisoquine hydroxylation, association with increased susceptibility to amiodarone side effects, 99, 35

Denbufylline, cyclic AMP phosphodiesterase isozyme inhibited by, cerebral cortex, rat, 99, 47

Deprenyl, depressant effect in animals pretreated with, 100, 119

2-Deoxyglucose, effect of capsaicin-sensitive sensory nerves on plasma glucose and catecholamine levels during stress induced by, 100, 523

Desensitization, temperature-dependence of, induced by ACh and histamine, guinea-pig, 100, 636

Desensitization, jejunum, profiles of after stimulation with histamine and methacholine, guinea-pig, 101, 881

Desmethylimipramine, effects on renal sympathetic axons of acute 6-hydroxydopamine in combination with, dog, 99, 655

Dexamethasone, effect on poly-L-arginine-induced oedema, hind paw, rat, 101, 986

- , inhibition of pulmonary airway eosinophil accumulation due to inhaled PAF by, guinea-pig, 99, 267

Diabetes, bladder dysfunction in, 101, 411

- , experimental, renal vascular responsiveness to arachidonic acid in, 100, 336
- , prevention of impaired induction of ornithine decarboxylase by ponalrestat in, 101, 978
- , protein kinase C-mediated responses of arteries in rats with, 101, 465

Diacylglycerol kinase, influence on noradrenaline release and phosphoinositide hydrolysis in chromaffin cells, 101, 521

Diacylclycerol lipase, influence on noradrenaline release and phosphoinositide hydrolysis in chromaffin cells, 101, 521

Diadenosine polyphosphates, effect on catecholamine secretion from isolated chromaffin cells, 100, 360

Diazepam, comparison with MDL 73005EF as a 5-HT_{1A} selective ligand, effect on models of anxiety, 99, 343

- , effects on release of [³H]-5-HT and [¹⁴C]-GABA by chronic administration of, 99, 11

Diazoxide, action on blood vessels compared with cromakalim, rat, 100, 605

- , effect on ATP-sensitive K⁺ channels in insulin-secreting cells, 99, 487

Digitalis-like substance, from porcine left ventricular extract, effect on canine ventricular muscle, 101, 370

8-[2-(2,3-Dihydro-1,4-benzodioxin-2-yl-methylamino)ethyl]-8-azaspiro[4,5]decane-7,9-dione methyl sulphonate, see MDL 73005EF

Dihydropyridine, effect on voltage-dependent modulation of rat sensory neurone Ca channel currents by G protein activation, 99, 629

- , enantiomers of act at different sites on voltage-dependent Ca channel of vascular muscle, 101, 3

Dihydropyridine receptors, separate binding sites in mitochondria and plasma membranes, bovine adrenal medulla, 101, 21

Dihydropyridines, effect on adenosine sensitivity, rat hippocampus, 101, 97

Diisopropylphenol, anaesthetic effect on axonal currents, olfactory cortex, rat, 101, 217

Diltiazem, antagonism by glibenclamide of vasodepressor effects of, dog, 100, 413

- , effect on coronary haemodynamic and cardiac functional effects produced by intracoronary administration of endothelin-1, dog, 99, 597
- , effect on opioid withdrawal response, guinea-pig ileum, 101, 958
- , effects on Ca concentrations in cytosol and on contraction force, coronary artery, pig, 101, 273

DiMe-C7, in dopamine and 5-HT metabolism, effect of ondansetron on, rat, 99, 227

(\pm)-N-(2,6-Dimethyl-phenyl)-4[2-hydroxy-3-(2-methoxyphenoxy)-propyl]-1-peperzine acetamide dihydrochloride, see ranolazine

Dipetalonema viteae, actions of ACh and GABA on, 101, 971

Disopyramide, negative inotropic effects on papillary muscles, guinea-pig, 101, 789

Distal colon, rat, existence of 'atypical' β -adrenoceptors (β_3 -adrenoceptors) in, 101, 569

Dithiothreitol, in modulation of NMDA receptors, 101, 178

Dobutamine, comparison of haemodynamic profile with adibendan (BM 14.478), dog, 101, 686

DOI, effect on 5-HT neuronal firing in dorsal raphe nucleus and 5-HT release and metabolism in frontal cortex, rat, 99, 221

L-DOPA, gludopa as pro-drug for, 101, 301

- , responses of rat substantia nigra compacta neurones to, 100, 257

Dopamine, blockade of uptake by cocaine, substantia nigra zona compacta, rat, 99, 731

- , conversion from L-DOPA and release from substantia nigra zona compacta, 100, 257
- , effect of B-HT 920 on mesolimbic systems in normosensitive and supersensitive rats, 99, 509
- , inhibition of uptake by cocaine, nucleus accumbens, rat, 99, 736
- , involvement in mediation of feeding induced by buspirone, gepirone and ipsapirone, 99, 519
- , regulation of synthesis and metabolism of after disruption of nerve conduction, medial forebrain bundle, 99, 741

Dopamine metabolism, effects of acute and chronic clozapine on, striatum and nucleus accumbens, rat, 100, 774

Dopamine D₁ receptor agonists, FPL 63012AR, 100, 295

- , characterization of, cockroach salivary gland acinar cells, 101, 103

Dopamine release, cholecystokinin 8S-evoked mediated by cholecystokinin_A-receptor, nucleus accumbens, rat, 99, 845

- , effects of acute and chronic clozapine on, striatum and nucleus accumbens, rat, 100, 774

Dorsal horn, selective actions of opioids in, 101, 477

DP-Receptor antagonist, BW A868C, in bronchoconstrictor effect of inhaled PGD₂, guinea-pig, 100, 761

DP-Receptors, role in bronchoconstrictor effect of inhaled PGD₂, guinea-pig, 100, 761

Duodenal distension, effect of granisetron and ondansetron on visceral pain reflex induced by, 100, 497

Dynorphin A(1-8), mediation of agonist action through conversion to [Leu^5]enkephalin, myenteric plexus, guinea-pig, 101, 674

E

E-4031, effect on ischaemia-induced myocardial damage, canine heart, 99, 577

Ectoionopate, effect on latencies of action potentials, skeletal muscle, mouse, 99, 721

EDRF, A₂ purinoceptors involved with, thoracic aorta, rat, 100, 576

- , as a modulator of skeletal muscle microcirculation, rabbit, 100, 463
- , effect of endothelium-dependent and endothelium-independent on contraction to α -adrenoceptor agonists, rabbit, 99, 77
- , effect of inhibition of activity on vascular responses to endothelin-1, rabbit ear, 101, 781
- , effect on release of cyclic GMP, rat kidney, 99, 364
- , effects of palmitoyl carnitine on, rat aorta, 100, 241
- , endogenous inhibitor or, rabbit brain, 101, 865
- , impairment of endothelium-dependent relaxation of pulmonary arteries in Eisenmenger's syndrome patients, 99, 9
- , in modulation of gastric mucosal integrity, rat, 99, 607
- , inhibition by L-glutamate of release of, endothelial cells, 101, 237
- , inhibitory effects of native and low-density lipoproteins on, rabbit aorta, 100, 21
- , inhibitory role, pulmonary artery, human and rat, 101, 166
- , release from cultured aortic cells, inhibition by a phorbol ester, 99, 565
- , release potentiated by chronic exposure to eicosapentaenoic acid, endothelial cells, 99, 176
- , response of spinal artery to, 101, 200
- , selective release in proximal arteries, rat, 100, 552
- , tone affects release of, 100, 767

EEG-energy, increase by zacopride, rat, 101, 281

Eicosanoids, relationship between tumour necrosis factor, Paf and, as mediators of endotoxin-induced shock, mice, 99, 499

- , synthesis of in bradykinin-induced vasoconstriction, mesenteric arteries, rat, 101, 344

Eicosapentaenoic acid, chronic exposure of endothelial cells to, potentiates release of EDRF, 99, 176

EIPA, ionotropic effects of ouabain and Bay K 8644, effect of on, guinea-pig atria, 100, 717

Eisenmenger's syndrome, impairment of pulmonary endothelium-dependent relaxation in, human, 99, 9

Electrocortical activity, effects of opioid receptor agonists, locus coeruleus, rat, 101, 655

Electrolyte excretion, effect of κ -opioid-receptor agonists on, rat, 99, 181

Elgodipine, potent systemic and coronary vasodilator actions of, pig, 99, 355

EMD 52692, haemodynamic effect of, pig, 101, 605

Enalaprilic acid, effect on pulmonary inflation pressure induced by bronchoconstrictor agents, 100, 502

Endogenous inhibitor, of endothelium-dependent relaxation, rabbit brain, 101, 865

Endogenous opioid peptides, involvement in hypotensive action of α -methyldopa and non-involvement in α -methyldopa-induced hypomotility and antinociception, rat, 99, 467

Endogenous positive ionotrope, effect on canine ventricular muscle, 101, 370

Endopeptidase, in formation of [Leu^5]enkephalin from dynorphin A(1-8), myenteric plexus, guinea-pig, 101, 674

Endothelial cells, chronic exposure to eicosapentaenoic acid potentiates release of EDRF, 99, 176

- , inhibition by L-glutamine of release of EDRF from, 101, 237

Endothelial receptors, interaction of pFHHSID at, *in vitro*, 99, 637

Endothelin, comparison of vasoconstrictor and vasodilator responses to, superior mesenteric vascular bed, rat, 99, 427

- , contractile activity of, human isolated bronchus, 100, 168
- , contractile effects by action on voltage-dependent Ca channels, human cerebral arteries, 99, 439
- , differences in regional vascular sensitivity to, between spontaneously hypertensive and normotensive Wistar-Kyoto rats, 100, 107
- , effect on cardiac contractility and membrane currents, guinea-pig, 99, 437
- , endothelin-dependent vascular activities of, superior mesenteric arterial bed, rat, 101, 81
- , induced contraction in guinea-pig trachea; comparison with rat aorta, 100, 383
- , inhibition of platelet aggregation, 99, 303
- , nitric oxide formation by in neural cells, 101, 722
- , reactivity and sensitivity of mesenteric vascular beds and aortic rings of spontaneously hypertensive rats to: effects of Ca entry blockers, 100, 31

Endothelin (16-21), structure-activity of, guinea-pig bronchus, 101, 232

Endothelin-1, activities in vascular network, rabbit ear, 101, 781

- , effect of aging on direct and indirect actions of, mesenteric arteries, rat, 100, 889
- , effect of diltiazem on coronary haemodynamic and cardiac functional effects of, dog, 99, 597
- , effects of pre-contraction on α_2 -adrenoceptor- and neuropeptide Y-mediated contractions, rat tail vascular bed, 101, 205
- , haemodynamic responses to, effects of L-NAME, rat, 101, 632
- , inhibition of [^3H]-IP formation induced by GABA, 100, 867
- , regional haemodynamic effects in Long Evans and Brattleboro rat, 99, 107
- , relationship between binding and site densities and constrictor activities of, tracheal smooth muscle, human and animal, 100, 786
- , structural requirements for binding to cerebellar sites, 101, 319

Endothelin-1, -2 and -3, regional responses to i.v. bolus injections of, in presence and absence of indomethacin, 100, 158

Endothelin-3, regional haemodynamic effects in Long Evans and Brattleboro rat, 99, 107

Endothelin analogues, interactions with binding of [^{125}I]-endothelin-1 to cerebellar homogenates, rat, 101, 319

Endothelin-1 constrictor activity, relationship between [^{125}I]-ET-1 binding site density and, human and animal airway smooth muscle, 100, 786

Endothelium, effect of aging on inhibitory effects of, against contractile effects of endothelin-1, 100, 889

- , effect of noradrenaline on, proximal and distal coronary arteries, rat, 100, 552
- , effect on local formation of angiotensin II, rat aorta, 100, 237
- , effects of pre-contraction with endothelin-1 on α_2 -adrenoceptor- and neuropeptide Y-mediated contractions in, rat, 101, 205
- , enhancement of production of prostacyclin by inhibitors of protein synthesis, 101, 799
- , impairment of relaxations to ACh and NO by a phorbol ester in, 101, 432
- , inhibition by a phorbol ester of release of EDRF in, pig aorta, 99, 565
- , inhibition of angiotensin converting enzyme in, 101, 121
- , inhibitory role of EDRF, pulmonary arteries, human and rat, 101, 166
- , interactions of palmitoyl carnitine with, rat aorta, 100, 241
- , modulates the effects of nitroglycerin on vascular endothelium, dog with pacing-induced heart failure, 101, 109
- , modulation of vasoconstrictor activity of endothelin-like peptides, superior mesenteric arterial bed, rat, 101, 81
- , possible site of ANF stimulation of cyclic GMP production, 99, 364
- , responses to vasoactive substances, 101, 200
- , role in endothelin-induced contraction, human cerebral arteries, 99, 439
- , role in mediation of actions of ATP, ACh and adenosine on joint blood vessels, rabbit knee, 99, 379

Endothelium-dependent relaxation, pulmonary artery, mediated by EDRF is impaired in Eisenmenger's syndrome patients, 99, 9

Endothelium-dependent relaxations, lack of effect of pertussis toxin on, rat, 100, 348

Endothelial cells, stimulation of cyclic GMP production in, pig, 101, 152

- , use of oxyhaemoglobin in investigation of platelet aggregation in, 101, 991

Endotoxin, and vascular reactivity, rat, 101, 913

- , nitric oxide and intestinal integrity, 101, 815

Endotoxin-induced shock, relationships between tumour necrosis factor, eicosanoids and platelet-activating factor as mediators of, 99, 499

Endplate potentials, effect of adenosine or CADO and of substances interfering with phosphoinositides/protein kinase C transducing system or adenylyl cyclase transducing system on, 100, 55

Enteric neurones, 5-HT₃ receptor forms distinct receptor subtype, guinea-pig, 99, 840

Eosinophil, pulmonary airway, accumulation due to inhaled PAF, effect of anti-asthma drugs, 99, 267

- , rh-GM-CSF enhances PAF-induced accumulation, guinea-pig, 100, 399

Eosinophilia, effects of drugs on lung hyper-responsiveness and, rat, 101, 821

Eosinophils, effect of MK-886 on 15-lipoxygenase product synthesis in, human phagocytes, 100, 15

- , induced pulmonary airway accumulation of by antigen challenge, guinea-pig, 99, 679
- , inhibition of induced chemotaxis by nedocromil sodium and sodium cromoglycate, 99, 798

Epilepsy, action of anticonvulsant succinimides, action by low-threshold calcium currents on, thalamic neurones, 100, 800

- , CGP 37848 and CGP 39551 as potential therapeutic agents for, 99, 791

Epithelium, role in agonist-induced contractile responses of trachealis, guinea-pig, 101, 257

- , role in modulating the responses of guinea-pig trachea induced by bradykinin, 99, 762
- , tracheal, distribution of β_1 - and β_2 -adrenoceptors in, mouse, 99, 136

Epithelium-derived inhibitory factor (EpDIF), pharmacological evaluation of, guinea-pig trachea, 100, 614

Epithelium removal, effect on actions of cholinomimetic drugs, trachea, guinea-pig, 100, 516

- , effect on reactivity of trachealis, guinea-pig, 99, 369
- , effects of on relaxation of airway smooth muscle, guinea-pig, 100, 73

Erectile tissue, human, pharmacology of, 101, 375

Ethanol, in inhibition of baroreflex bradycardia, role of brainstem GABA receptors, 101, 733

Ethanol intoxication, haemodynamic alterations in, piglets, 101, 227

Ether, effect on axonal currents, olfactory cortex, rat, 101, 217

Ethoxysuximide, effect on thalamic neurones, 100, 800

- , mechanism of anticonvulsant action of, 100, 807

Ethylisopropylamiloride, see EPA

N-Ethylmaleimide, inotropic effect of, papillary muscle, guinea-pig, 101, 406

Excitatory amino acids, effect of propentofylline on during ischaemia, rat hippocampus, 100, 814

Excitatory postsynaptic potential, effects of 5-HT₁ on, hippocampus, rat, 101, 171

Extracellular Ca²⁺, role in formation of inositol phosphates, ileum, guinea-pig, 99, 217

F

Fenbufen, effect on clenbuterol-induced hypertrophy of cardiac and skeletal muscle, rat, 101, 835

(+)-Fenfluramine, dependence of depressant effect on food intake on activity of endogenous CCK, 99, 65

FG7142, adverse effects on cardiac function, *ex vivo*, rat, 99, 441

- , effect on acetylcholinesterase activity following treatment with, mouse brain, 101, 599

FG 8205, properties of as partial agonist at benzodiazepine receptor, 101, 753

Fibrinolysis, modulation by sodium nitroprusside, rabbit, 101, 527

Fibroblast proliferation, effect of substance P on mediated by interaction with NK₁-receptor type, 100, 11

Filaria, actions of ACh and GABA on spontaneous contractions in, 101, 971

Flufenamate, in inhibition of effects of lactate in simulated ischaemia, myocardium, rat, 100, 477

Fluoroaluminato, -induced inositol phosphate formation by increases in tissue cyclic AMP, bovine trachea, 100, 646

p-Fluoro-hexahydrosila-diphenidol, as a highly selective ligand at muscarinic receptors, 99, 622

p-Fluoro-hexbutinol enantiomers, stereoselectivity ratios of, 99, 445

Fluspirilene, selective antagonism of calcium channel activators by, 100, 211

Forepaw treading, induced by 8-OH-DPAT attenuated by 5-HT_{1C} agonists, 101, 667

Forskolin, effect on contractile reactivity of mesenteric and renal arteries, rat, 101, 859

—, effect on endplate potential, neuromuscular junction, frog, 100, 55

—, enhances I_H, 101, 190

FPL 63012AR, a potent D₁-receptor agonist, 100, 295

FPL 63547, inhibitor of angiotensin-converting enzyme – pharmacological properties of, 100, 83

—, preferential biliary elimination of, rat, 100, 90

Fundus, rat, effects of galanin, its analogues and fragments on, 101, 297

Fura-2, measurements of mechanical activity and cytoplasmic free Ca²⁺ level with, 100, 677

G

G_α and G_i, modulation of adenylate cyclase activity in NG108-15 cells by NaF and guanine nucleotides by interaction with, 100, 223

GABA, action via GABA_A receptors on soma of paratracheal neurones produces an increase in membrane chloride conductance, rat, 100, 261

—, actions on spontaneous contractions in filariid, *Dipetalonema viteae*, 101, 971

—, blocked by petit mal convulsants and anticonvulsants, 100, 807

—, central inhibition by of release of vasopressin and oxytocin by osmotic stimulus, rat, 99, 529

—, differential effects of chronic lorazepam and alprazolam on receptor function, 101, 839

—, effect of NO-0500328 and NO-05-0329 on uptake of, rat hippocampal slice, 99, 103

—, effect of zinc on receptor complex, 99, 643

—, effects of depressed by Mg²⁺, neocortex, 101, 1006

—, in synaptic processing of somatosensory information, cat, 100, 689

—, inhibition of baroreflex bradycardia by potentiation of action of, by ethanol, 101, 733

—, modulation of histamine-induced IP formation, 100, 867

—, phosphono-analogues of, antagonism of GABA₂-receptor-mediated responses in ileum and vas deferens by, guinea-pig, 99, 422

—, pre- and postsynaptic receptors on neurones, rat brain, 101, 949

—, stimulates GABA_A receptors on NANC neurones, ileocolonic junction, dog, 101, 460

[¹⁴C]-GABA, effect of chronic diazepam treatment on release of, 99, 11

[³H]-GABA, effects of (–)-daurisoline on, presynaptic nerve terminals, 101, 45

GABA antagonists, at mammalian GABA_A receptors, 99, 727

GABA_B receptor, antagonism of responses of, by phosphono-analogues of GABA, ileum and vas deferens, guinea-pig, 99, 422

—, effect of intracerebroventricular administration on operant feeding in satiated pig, 101, 559

—, in synaptic processing of somatosensory information, S1 cortex, cat, 100, 689

—, inhibition of catecholamine release in resistance vessels by, rat, 100, 365

GABA_A receptors, role in inhibition of baroreflex bradycardia by ethanol, 101, 733

GABA release, development of tolerance to effects of vigabatrin on, cerebral cortex, spinal cord and retina, rat, 100, 324

Galanin, rat and porcine, in contraction of fundus strips, rat, 101, 297

Galanin analogues, effects on isolated fundus strips, rat, 101, 297

Galanin receptor, on surface of smooth muscle cells of fundus, rat, 101, 297

Gallamine, in mechanism of potentiation of neurally-induced bronchoconstriction, guinea-pig, 99, 582

Ganglion blocking activity, blockade of nicotinic relaxation as method for quantitative assessment of, bovine retractor penis muscle, 101, 472

—, relative potency of various drugs in, retractor penis muscle, bovine, 101, 472

Ganglionic stimulation or blockade, changes following chronic morphine treatment, rat, 99, 247

Gastric acid secretion, influence of capsaicin-sensitive afferent neurones on, stomach, rat, 100, 491

Gastric motility, role of PHI in regulation of, dog, 100, 231

Gastric mucosa, effect of ethanol on eicosanoid synthesis by, human, 99, 289

—, prostanoid stimulation of anion secretion in, mediation by different receptors, 101, 889

Gepirone, effect on hippocampus, rat, 101, 171

—, role of 5-HT and dopamine systems in eating induced by, 99, 519

GH₃ Pituitary cells, comparison of thyrotropin releasing hormone and di-methyl proline-TRH on, 101, 615

Glaucoma, effect of L-662,583 on intraocular pressure, 99, 59

Glibenclamide, antagonism of vasodopressor effects of cromakalim and nicorandil by, dog, 100, 413

—, effects of potassium channel openers and on uterus, rat, 101, 901

—, excites glucoreceptive ventromedial hypothalamic neurones by indirect inhibition of ATP-K⁺ channels, 101, 531

—, in blocking of K⁺ by ATP-sensitive channel openers, 101, 157

—, inhibits relaxant actions of cromakalim, diazoxide and minoxidil sulphate, rat blood vessels, 100, 605

—, is competitive antagonist of thromboxane A₂ receptor, coronary artery, dog, 100, 375

—, responses to cromakalim and pinacidil in smooth and cardiac muscle by use of, 100, 201

Glucocorticosteroids, effect on blood eosinophilia, rat, 101, 821

Glucose blood levels, role of adrenoceptors in effects of lithium on, rat, 100, 283

Glucose, plasma, role of α- and β-adrenoceptor subtypes in mediation of effects of catecholamines on fasting, rat, 100, 699

Glutamate, potassium-stimulated release in mediation of release of nitric oxide, 101, 8

Glutamide, effects of hypomagnesia on neuronal responses induced by neocortex, 101, 1006

Glutamine, inhibition of release of EDRF, endothelial cells, 101, 237

γ-Glutamyl-L-dopa, (gludopa), pharmacokinetics in normal and anephric rats and rats with glycerol-induced acute renal failure, 101, 301

γ-Glutamyl transpeptidase, effect on renal haemodynamic responses to CGP 22979, b 99, 15

Glutathione, effect on renal haemodynamic responses to CGP 22979, rat, 99, 15

Glyceryl trinitrate, haemodynamic responses to, effects of L-NAME, rat, 101, 632

Glycine, effect on NMDA receptor/ion channel complex in pathophysiology of epilepsy, 99, 285

Glycinamide, no consistent depression of glutamate-induced neurone firing by ionophoresis of, 100, 119

Glycine precursor, milacemide, depressant and stimulator effects, 100, 119

Glycolytic fibres, effect of ligation and of torbafylline on percentage of, rat, 99, 786

GMP, release and vasodilatation induced by EDRF and atrial natriuretic factor, rat kidney, 99, 364

Gossypol, effect on basal release of cyclic GMP, rat kidney, 99, 364

G-Proteins, in mediation of endothelium-dependent vasodilatation, mesenteric artery, rat, 100, 427

GR43175, blocks neurogenic oedema in dura mater, 99, 202

—, see sumatriptan

Graham, J.D.P., obituary, 99, 3

Granisetron, effect on visceral pain reflex induced by duodenal distension, rat, 100, 497

GTP binding protein, effect of a dihydropyridine antagonist on voltage-dependent modulation of sensory neurone Ca channel currents by, rat, 99, 629

Guanylate cyclase, Ca²⁺ activity stimulates nitric oxide forming enzyme which synthesizes the activator of, 101, 722

—, lack of coupling of CGRP receptors to release of agents activating, 99, 71

Guanine nucleotides, in modulation of adenylate cyclase activity in NG108-15 cell membranes by interaction with G_i and G_α, 100, 223

H

H-7, effect on endplate potentials, neuromuscular junction, frog, 100, 55

Haemodynamic effect, of N^G-nitro-L-arginine methyl ester, rat, 101, 625

Haemodynamics, effect of indomethacin on responses to endothelins and sarafotoxin, 100, 1518

Haemoglobin, effect on basal release of cyclic GMP, rat kidney, 99, 364

Haemorrhage, effects of μ -opioid receptor agonists on circulatory responses to, rabbit, 100, 421

Haloperidol, induction of increase in DOPAC and HVA after disruption of nerve conduction, striatum, 99, 741

Haloperidol-sensitive σ recognition site, lack of involvement in discriminative stimulus properties of (+)-N-allylnormetazocine, 99, 145

Halothane, effect on nerve terminal Na- and K-mediated currents, olfactory cortex, rat, 101, 217

Heart, actions of ATP on intracardiac neurones in, 100, 269

Heart, developing, rat, role of β -adrenoceptor-adenylate cyclase system in developmental decrease in sensitivity to isoprenaline in, 100, 138

Heart failure, congestive, endothelium modulation of effects of nitroglycerin on blood vessels from dogs with, 101, 109

Heart muscle, effect of RS 30026 on, pig, 99, 687

Helodermin, vascular effects compared with VIP, 99, 526

Helospectin I, vascular effects compared with VIP, 99, 526

Helospectin II, vascular effects compared with VIP, 99, 526

Heparin, effect on polycation-induced oedema, hind paw, rat, 101, 986

Hepatic arterial vasodilatation, effect of ANF on, dog, 99, 810

Hepatic artery, noradrenergic-purinergic cotransmission in, rabbit, 99, 835

—, role of adenosine in hyperaemic response to portal vein occlusion, 100, 626

Hepatic portal haemodynamics, alteration by alteration by ANF, effects of, 99, 810

Heterogeneity of α_2 -adrenoceptors, evidenced by clonidine and *p*-aminoclonidine in human, rat and bovine brain stem, 99, 803

Hexahydro-difenidol analogues, stereoselective inhibition of muscarinic receptor subtypes by, 99, 445

Hexamethonium, lack of effect on ability of epithelium removal to potentiate ACh, trachea, guinea-pig, 100, 516

Hexacyclium derivatives, selectivity for smooth muscle muscarinic receptors from a greater decrease in affinity towards cardiac as compared to ileal receptors, 100, 150

Histamine, acid responses to hypoglycaemia induced by, influence of systemic capsaicin pretreatment, stomach, rat, 100, 491

—, adenosine inhibition of response to, human, 100, 37

—, effect on Ca^{2+} elevations in presence of extracellular Ca^{2+} , coronary artery, pig, 101, 273

—, in relaxation of aorta via release of EpDIF, rat, 100, 614

—, in release of prostacyclin potentiated by interleukin-1, endothelium, human, 101, 703

—, inhibition of release of by nedocromil sodium, human lung, 100, 247

—, methoxyphenamine inhibits congestion induced by, rat, 101, 394

—, modulation of responses to by mucosal and adventitial surface of epithelium, guinea-pig trachealis, 101, 257

—, temperature-dependence of desensitization induced by, guinea-pig, 100, 636

Histamine H₁-receptor, contractions mediated by, reduced after histamine, jejunum, guinea-pig, 101, 881

Histamine receptors, alterations produced during desensitization, guinea-pig ileal smooth muscle, 101, 587

Histamine H₃-receptors, characterization with H₃-selective ligands, guinea-pig ileum, 101, 621

Hippocampus, effect of propentofylline during ischaemia, 100, 814

Hippocampal neurone, inhibition of T-type Ca^{2+} channels by nicergoline in, 100, 705

Hippocampus, inhibitory adenosine receptor at, antagonism by 1,3,8-substituted xanthines, 101, 453

—, prevention of neuronal loss produced by tetanus toxin by NMDA receptor antagonist MK801, rat, 101, 776

—, sensitivity to kainic acid, and antagonism by kynurenone, 101, 847

[³H]-5-HT, effect of chronic diazepam treatment on release of, 99, 11

5-HT, in endotoxin-induced impairment of vascular responses, rat, 101, 913

—, inhibitory effect on penile erectile function, rat, 101, 698

5-HT agonists, influence on sympathetic preganglionic neurones, rat, 99, 667

5-HT_{1A} agonists, effect on ACh efflux, cerebral cortex, guinea-pig, 101, 448

5-HT₃ agonists, effect of ACh efflux from cerebral cortex, cf 5-HT_{1A} agonists, guinea-pig, 101, 448

5-HT antagonists, influence on sympathetic preganglionic neurones, rat, 99, 667

5-HT₃-antagonists, effect on mechanoreceptor responsiveness produced by 5-HT, normal and arthritic rat, 101, 715

5-HT₁-like receptors, contraction of venous rings by action of sumatriptan at, dog, 99, 219

—, effect of stimulation by 5-HT on tracheal vascular bed and smooth muscle, sheep, 99, 21

5-HT-mediated behaviour, effect of ritanserin, ICI 170,809 and ketanserin on, 100, 793

5-HT neuronal firing, effect of DOI on, rat, 99, 221

5-HT_{1A} receptors, effect on blood pressure and heart rate by somatodendritic, located on 5-HT neurones in ventral medulla, rat, 99, 713

5-HT_{1A} receptors, effects on glycaemia and insulinaemia on spontaneously hypertensive rat, 100, 173

—, evidence for interaction between central 5-HT₂ receptors and, 100, 793

—, role in von Bezold-Jarisch reflex, rat, 100, 757

5-HT₂ receptors, contribution to contractile action, guinea-pig ileum, 101, 553

—, effect on tracheal vascular bed of stimulation by 5-HT, sheep, 99, 21

—, evidence for interaction between 5-HT_{1A} receptors and, 100, 793

—, involvement in action of 5-HT on articular sensory receptors in normal and arthritic rats, 101, 715

5-HT₃ receptors, involvement of purinergic innervation and action of, urinary tract, rabbit, 101, 212

—, action on articular sensory receptors, normal and arthritic rat, 101, 715

—, characterization of, ileum, guinea-pig, 101, 513

—, characterization in isolated preparations, guinea pig, 101, 591

—, in contraction and evoked [³H]-acetylcholine release, guinea-pig ileum, 101, 553

—, pharmacological characterization of, guinea-pig tissues, 101, 591

5-HT₄ receptors, in action of zacopride and BRL 24924 in colliculi neurones, mouse, 101, 281

5-HT receptor subtypes, behavioural evidence for functional interactions between, rats and mice, 101, 667

5-HT release, effects of DOI on, rat, 99, 221

H-Tyr-D-Arg-Phe-Lys-NH₂ (DALDA), effect of non-cholinergic nerve-mediated bronchoconstriction, guinea-pig, 101, 269

α -Human atrial natriuretic peptide, inhibitory action on noradrenaline-induced synthesis of IP₃, rabbit aorta, 99, 536

Human proendothelin₁₋₃₈, vasoconstrictor activities of, mesenteric arterial bed, rat, 101, 81

Hydralazine, effect on central 5-HT function, rat, 99, 41

—, effects on central 5-HT biochemistry and functions, rats and mice, 99, 41

(+)-Hydrastine, potent competitive antagonist at mammalian GABA_A receptors, 99, 727

Hydroquinone, effect on response to NANC stimulation, rat anococcygeus and bovine retractor penis muscle, 99, 194

6-Hydroxydopamine, effect on renal sympathetic axons in combination with selective neuronal uptake inhibitors, dog, 99, 655

Hydroxylator phenotype, role in hepatic drug accumulation and enzyme induction after chronic amiodarone feeding, rat, 99, 35

2-Hydroxysaclofen, effect on inhibitory effect of R-(—)-baclofen on vasopressor response, rat, 100, 365

5-Hydroxytryptamine, characterization of receptors mediating ileal contractions, guinea-pig, 101, 513

—, contraction induced by, inhibited by calcitonin gene-related peptide, 101, 193

—, effect of B-HT 920 in normosensitive rat, 99, 509

—, effects of 5-HT₃ receptor antagonists on, submucosal neurones, guinea-pig, 99, 840

—, effects on articular sensory receptors in normal and arthritic rat, 101, 715

—, enhancement of [³H]-inositol phosphates accumulation in presence of, human, 100, 37

—, induced tachycardia mediation by 5-HT₄ receptor, pig, 100, 665

—, influence of agonists and antagonists of, on sympathetic preganglionic neurones, rat, *in vivo* 99, 667

—, inhibition of uptake by cocaine, nucleus accumbens, rat, 99, 736

—, involvement in mediation of feeding induced by busipirone, gepirone and ipsapirone, 99, 519

—, mediation of effects on tracheal vasculature and smooth muscle by stimulation of 5-HT₁-like and 5-HT₂ receptors, 99, 21

—, presynaptic action of and involvement of purinergic innervation, lower urinary tract, rabbit, 101, 212

—, receptor in human atrium, 100, 879

5-Hydroxytryptamine, biochemistry, effects of Ca^{2+} antagonists and hydralazine on, rats and mice, 99, 41

5-Hydroxytryptamine ligands, effects on excitatory synaptic transmission, hippocampus, rat, 101, 171

5-Hydroxytryptamine receptors, distinct receptor subtype of, 99, 840

- , interaction with MDL73005EF as basis of anxiolytic-like activity, 99, 343
- , mediation of 5-HT-induced tachycardia by, pig, 100, 665

5-Hydroxytryptaminergic neurones, synaptosomal tryptophan carrier not located exclusively on, 101, 981

Hyperaemia, effect of endogenous nitric oxide as modulator, skeletal muscle, rabbit, 100, 463

Hyperreactivity, non-specific airway, induction by K^+ channel blockade, rat trachea, 101, 541

Hyperresponsiveness, contribution of platelets and airway smooth muscle in PAF-induced, 101, 31

Hypertension, increased reactivity of mesenteric vascular bed of spontaneously hypertensive rat to endothelin-1 as result of change in vascular structure, 100, 31

Hypo- and hyper-thyroid states, influence on responses to catecholamines, rat aorta, 99, 541

Hypogastric ganglion, activation of opioid receptors on nerve terminals depresses transmitter release in, mouse, 101, 505

Hypomotility, α -methyldopa-induced, rat, 99, 467

Hypothermia, induced by 8-OH-DPAT, rats and mice, 101, 667

Hypoxia, in constriction of large veins by endothelin-1, rabbit ear, 101, 781

- , response of coronary artery rings isolated from sheep to CGRP or NPY modified by, 99, 774

I

Ibudilast, inhibition of leukotriene D_4 -induced formation of inositol phosphates, guinea-pig lung, 100, 564

ICI1207968, an orally active and selective inhibitor of 5-lipoxygenase, pharmacological profile, 99, 113

Ileal mucosa, mediation of prostanoid stimulation of anion secretion in, guinea-pig, 101, 889

Ileocolonic junction, GABA_A receptor-mediated stimulation of NANC neurones in, dog, 101, 460

Ileum, alterations in histamine receptors during agonist-induced desensitization, guinea-pig, 101, 587

- , characterization of 5-HT receptors in, guinea-pig, 101, 513
- , guinea-pig, tachykinin receptors in, 101, 996
- , species related difference in characterization of 5-HT₃ receptors, 101, 591

Iloprost, effect on cardiac response to adrenergic nerve stimulation, guinea-pig, 99, 717

- , pretreatment induces different forms of desensitization in NG108-15 and NCB-20 cell lines, 99, 309

Imidazoline, involvement in central hypotensive effect of rilmenidine, rabbit, 100, 600

Imidazoline-like binding site, pharmacologically distinct from α_2 -adrenoceptors, rat brain, 99, 803

Imiloxan, as selective α_{2B} -adrenoceptor antagonist, 99, 560

N-Iminoethyl-L-arginine, inhibitor of endothelial nitric oxide synthase, 101, 746

Impotence, prediction of ganglion-blocking activity causing bovine retractor penis muscle, 101, 472

¹¹¹Indium-platelet scintigraphy, in platelet aggregation inhibited by endothelin-1, 99, 303

Indomethacin, effect of antidiuretic activity of vasopressin, rhesus monkey, 99, 750

- , effect on bradykinin-induced responses of trachea, guinea-pig, 99, 762
- , effect on changes induced by endotoxin, mice, 99, 499
- , effect on effects of capsaicin on responses to field stimulation, ear artery rabbit, 99, 152
- , effect on mucosa in inhibition of prostanoid biosynthesis, rat, 99, 607
- , effect on poly-L-arginine-induced oedema, hind paw, rat, 101, 986
- , in abolition of ET-1-induced inhibition of ADP-stimulated platelet aggregation and potentiation of pressor response, 99, 303
- , in bronchoconstrictor effect of inhaled PGD₂, guinea-pig, 100, 761
- , inhibits toluene diisocyanate-induced contractions, urinary bladder, rat, 100, 886

Inhibitor, endogenous, of endothelium-dependent relaxation, presence of in brain, rabbit, 101, 865

Inositol phosphate, formation stimulated by P_2 -purinoceptors via pertussis toxin-insensitive pathway, renal cortex, rat, 100, 63

Inositol phosphates, effect of carbachol and PIA on myocardial content of, 101, 829

- , formation by increases in tissue cyclic AMP, bovine trachea, 100, 646
- , GABA inhibition of histamine-induced formation of, guinea-pig cerebellum, rat cerebellum and cerebral cortex, 100, 867
- , influence of phorbol esters and diacylglycerol kinase and lipase inhibitors on, chromaffin cells, 101, 521

Inositol phospholipid hydrolysis, adenosine inhibition of response to histamine, human, 100, 37

- , characterization of in peripheral tissue, 101, 1001

Inositol phospholipids, amplification of inhibitions by lithium in hydrolysis of, brain, mammalian, 100, 723

Inositol 1,4,5-trisphosphate, characterization of stereospecific binding sites for, airway smooth muscle, 99, 297

- , formation of via pertussis toxin-insensitive pathway by P_2 -purinoceptors, renal cortex, rat, 100, 63

Inositol trisphosphate contraction, effect of caffeine during loading of Ca^{2+} -store, rat myometrium, 99, 261

Inositol trisphosphate, effect of noradrenaline on in thyroid states, 99, 541

Inotropic effect, of carbachol and PIA in heart, 101, 821

- , of N-ethylmaleimide on papillary muscles, guinea-pig, 101, 406

Inotropic effects, of isoprenaline and IBMX on cellular cyclic AMP, guinea-pig ventricular myocardium, 99, 401

Insulin, effect of capsaicin pretreatment on acid responses to hypoglycaemia induced by, 100, 491

- , mechanism of 8-OH-DPAT-mediated inhibition of, spontaneously hypertensive rat, 100, 173
- , role of adrenoceptors in effects of lithium on secretion of, rat, 100, 283

Insulin, plasma, role of α - and β -adrenoceptor subtypes in mediation of effects of catecholamines on concentrations of, rat, 100, 699

Insulin-secreting cell, effects of pinacidil, RP 49356 and nicorandil on ATP-sensitive K^+ channels on, 99, 487

Interleukin-1, interaction between and fibrinolytic system in degradation of collagen by chondrocytes, rabbit, 100, 631

- , potentiation of histamine-induced release of prostacyclin, endothelium, human, 101, 703

Interleukin-1 α , pyrogenic actions of, 100, 542

Interleukin-1 β , pyrogenic actions of, 100, 542

Interleukin-3, effect on blood neutrophils, bone marrow and pulmonary airway eosinophils, guinea-pig, 100, 399

Intracardiac neurones, actions of ATP on, guinea-pig, 100, 269

Intracellular Ca^{2+} , reduction of NMDA receptors with dithiothreitol increases, 101, 178

- , significance of coupling of postjunctional α -adrenoceptor subtypes to dual sources of, isolated blood vessels, rabbit, 99, 253
- , effect of capsaicin on, dorsal root ganglion, rat, 101, 423

Intracellular calcium concentration, and K^+ channel openers, coronary artery, 101, 157

Ion transport, intestinal, antisecretory effects of neuropeptide Y fragments on, jejunum mucosa, rat, 101, 247

IP₃, 5-HT and histamine, synthesized cyclic nucleotides interact with action of for regulation of contraction, dog tracheal smooth muscle, 100, 41

Isapirone, effect on hippocampus, rat, 101, 171

- , role of 5-HT and dopamine systems in eating induced by, 99, 519

Ischaemia, effects of PAF during, guinea-pig, 101, 734

- , simulated, modification of contraction by mediators released by endothelium, coronary artery, sheep, 100, 407
- , simulated, assessment of changes in cytoplasmic calcium concentration during exposure of myocardium to, rat, 100, 477

Ischaemia, simulated, response of coronary artery rings isolated from sheep to CGRP or NPY modified by, 99, 774

Isoflurane, in anaesthetic suppression of transmitter actions in neocortex, 101, 61

Isoprenaline, effect of carbachol on contraction, intracellular Na^+ activity and cyclic AMP, papillary muscles exposed to, guinea-pig, 99, 401

- , effect on cardiac β -adrenoceptors, rat, 99, 27
- , effect on contractile reactivity of mesenteric and renal resistance arteries, rat, 101, 859

K

K252a, effect on neutrophil respiratory burst activated by receptor stimulation and post-receptor mechanisms, 100, 819

K^+ , in formation of inositol phosphates, ileum, guinea pig, 99, 217

K^+ channel, opening properties of diazoxide and minoxidil sulphate, rat blood vessels, 100, 605

K⁺ channels, in mediation of endothelium-dependent vasodilatation, mesenteric artery, rat, 100, 427
 —, inhibition by phentolamine and yohimbine, pancreatic β -cells, mouse, 101, 115
 —, opened by cromakalim in vascular and non-vascular smooth muscle, 100, 201
K⁺ channels, ATP-sensitive, effect of cromakalim in insulin-secreting cells, 99, 169
K⁺-channel openers, antagonism by glibenclamide of vasodepressor effects of, dog, 100, 413
 —, haemodynamic interactions between and sympathetic nervous system, rat, 100, 557
 —, promotion of opening of ATP-sensitive and inhibition of Ca^{2+} -activated by pinacidil in K⁺-contracted mesenteric artery, dog, 100, 143
 —, role in cytoplasmic calcium and relaxation of smooth muscle by, 101, 157
K⁺, high, induction of atropine-resistant relaxation by, in iris dilator muscle, rat and pig, 100, 401
Kainate, excitation by, blocked by philanthotoxin, brainstem, rat, 101, 968
Kainic acid, sensitivity of hippocampal neurones to, 101, 847
Ketamine, effect on axonal currents, olfactory cortex, rat, 101, 217
 —, spinal contribution to depression of reflexes, rat, 101, 563
Ketanserin, attenuation of 5-HT₂-receptors with, in presence of stenosis, attenuates the 5-HT-induced decreases in coronary artery and coronary blood flow, 100, 153
 —, blocking of vasoconstriction of tracheal smooth muscle by 5-HT, sheep, 99, 21
 —, in collagen-induced platelet adhesion/aggregation response and release of 5-HT, cat, 99, 631
Ketoprofen, effect on interleukin-1 pyrogenicity, 100, 542
Ketotifen, in prevention of development of airway hyperreactivity, guinea-pig, 99, 396
 —, inhibition of pulmonary airway eosinophil accumulation due to inhaled PAF by, guinea-pig, 99, 267
Kininase I, effect on bradykinin-induced bronchoconstriction, guinea-pig, 101, 77
Kinins, induced by carrageenin and zymosan, rat, 101, 418
Kynurenic acid, post-synaptic kainate receptors sensitive to antagonism by, 101, 847

L

L-662,583, an effective ocular hypotensive carbonic anhydrase inhibitor, experimental animals, 99, 59
Labetalol, antiarrhythmic efficacy of, 100, 855
Lanthanum, in inhibition of Na⁺-K⁺ pump activity, peritoneal mast cells, rat, 100, 453
Leucocytes, decrease in after ovalbumin to animals injected with platelets from actively sensitized animals, 100, 185
 [**Leu⁸**]enkephalin, dynorphin A(1-8) conversion to, myenteric plexus, guinea-pig, 101, 674
Leukotriene D₄, effect of ibudilast on D₄-induced formation of inositol phosphates, guinea-pig lung, 100, 564
Leukotriene C₄, D₄ and E₄, effect of SK&F S-106203 on vasopressor responses of, rat, 100, 195
Leukotriene, lack of role in changes of airway permeability induced by PAF, rat, 101, 896
Leukotrienes, increase in in human gastric and colonic mucosa by ethanol, 99, 289
 —, MK-886 inhibitor of, in synthesis of human phagocytes, 100, 15
Levodopa metabolism, effect of benserazide on metabolism of, rat, 100, 743
Lidocaine, rate-dependence of electrophysiological effects of in cardiac Purkinje fibres, dog, 99, 124
Lignocaine, effect of axonal currents, olfactory cortex, rat, 101, 217
 —, effect on established ventricular fibrillation, 100, 503
 —, myocardial uptake of, rabbit, 101, 843
Lipid peroxides, in antinociceptive activity of paracetamol in inflammatory pain, 101, 869
Lipoproteins, low-density, effect on EDRF, rabbit aorta, 100, 21
5-Lipoxygenase, chiral inhibitors of with anti-inflammatory activity, 101, 501
 —, inhibition by ICI1207968, 99, 113
 —, differential regulation of pathways in peritoneal leukocytes, rat, 101, 128
5-Lipoxygenase inhibition, by MK-886 in human phagocytes, 100, 15
5-Lipoxygenase inhibitor, in bronchoconstrictor effect of inhaled PGD₂, guinea-pig, 100, 761
Lithium, amplifies inhibitions of inositol phospholipid hydrolysis,

brain, mammalian, 100, 723
 —, effects of acute and chronic treatment on pilocarpine-stimulated phosphoinositide hydrolysis, mouse brain, 101, 39
 —, interactions between adenosine and phorbol esters or, at neuromuscular junction, frog, 100, 55
 —, role of adrenoceptors in effects on blood glucose levels and insulin secretion, *in vivo* and *in vitro*, rat, 100, 283
Liver, reduced high affinity of α_1 -adrenoceptors in senescent rat, 101, 650
Locomotor activity, effect of administration of nicotinic agonists intracerebrally, 99, 273
Locus coeruleus, effects of selective agonists at opioid receptor subtypes, rat, 101, 655
Lorazepam, differential effects on benzodiazepine binding and GABA_A-receptor function, 101, 839
Lung hyper-responsiveness, association between and blood eosinophilia, rat, 101, 821
Lung resistance, effects of aerosolised substance P on, guinea-pig, 100, 69

M

Magnesium, effect on transmitter actions in neocortex, 101, 1006
 —, in inhibition of Na⁺-K⁺ pump activity, peritoneal mast cells, rat, 100, 453
 —, modulation of divalent metal ion binding sites accessible to calcium, 100, 5
Mast cells, degranulation of anti-inflammatory effect, rat, 99, 350
 —, inhibition of Na⁺-K⁺ pump activity by divalent cations in peritoneum, rat, 100, 453
Mast cell-dependent inflammation, pro- and anti-inflammatory effects of PGE₂ and PGF₂, hamster cheek pouch, 99, 449
MDL 73005F, characterization of as 5-HT_{1A} selective ligand, effect of anxiety, 99, 343
MDL 12,330A, effect on endplate potentials, neuromuscular junction, frog, 100, 55
Mecamylamine, blocks increase in locomotor activity produced by nicotine or cytisine into ventral tegmental area, rat, 99, 273
Meclofenamate, receptors in circular muscle treated with, guinea-pig stomach, 101, 809
Medial forebrain bundle, regulation of synthesis and metabolism of striatal dopamine after disruption of nerve conduction in, 99, 741
Mepyramine, binding to ileal muscle unaltered by histamine, guinea-pig, 101, 587
Mesenteric arteries, actions of pinacidil at neuromuscular junctions in, guinea-pig and rabbit, 101, 581
 —, bradykinin-induced vasoconstriction of, rat, 101, 344
 —, G-proteins, K⁺ and Ca channels in endothelium-dependent and BRL-induced vasodilatation of, rat, 100, 427
 —, opposing effects of pinacidil on K⁺ channels in, dog, 100, 143
Mesenteric vascular bed, reactivity and sensitivity of to endothelin: effects of Ca entry blockers, 100, 31
Mesolimbic dopamine, facilitatory role of 5-HT₃ receptor activation on, rat, 99, 277
Mesolimbic dopamine system, effect of B-HT 920 on in normosensitive and supersensitive rat, 99, 509
Methacholine, sensitivity of isolated tracheal strips at 37° after removal of epithelium, guinea-pig isolated trachealis, 99, 369
Methiothepin, effect of 5-HT_{1A} receptor antagonist action of in von Bezold-Jarisch reflex, rat, 100, 757
 —, modification of ischaemic-induced contraction in circumflex coronary artery by, sheep, 100, 407
Methohexitone, spinal contribution to depression of reflexes, rat, 101, 563
Methoxy alkyl thiazoles, chiral interaction with 5-lipoxygenase, 101, 501
Methoxyphenamine, inhibits basal and histamine-induced nasal congestion, rat, 101, 394
 α -Methyldopa, in induction of naltrexone-insensitive antinociception and hypomotility, rat, 99, 467
 [³H]- α -, β -Methylene ATP, affinity binding sites for, urinary bladder, rat, 101, 291
 α , β -Methylene ATP, effect of suramin in detrusor muscle, guinea-pig bladder, 99, 617
 —, effect on hepatic artery, rabbit, 69, 835
 —, selectivity of in inhibiting vascular responses, *in vivo*, and *in vitro*, rat, 99, 820
 β , γ -Methylene ATP, effect of Bay K 8644 and nifedipine on responses to urinary bladder, rat, 101, 494
R-(α)-Methylhistamine, histamine receptor mediating inhibition of cholinergic neurotransmission in guinea-pig ileum is same as

H₃-receptor in rat cerebral cortex, 101, 621

Methysergide, antagonism of contractions elicited by neutrophils and supernates derived from, rabbit thoracic aorta, 99, 553

- , in definition of heterogeneity of α_2 -adrenoceptors in rat cortex by, not in human platelets, 99, 481
- , attenuation of 5-HT-induced increases in coronary blood flow unaffected by blockade of 5-HT₂-receptors with, 100, 153

5-Methylurapidil, hypotensive effects of following stereotaxic micro-injection into ventral medulla, 99, 713

Metoprolol, cardio-depressive effect of, 99, 592

- , β_1 - and β_2 -adrenoceptor binding of, 99, 592

Microclimate pH, and weak electrolyte absorption, 101, 937

Microvascular permeability, and neutrophils in myocardial reperfusion, rabbit, 100, 729

Migraine, effect of sumatriptan, dura mater, 99, 202

Milacemide, depressant agent not requiring its metabolism into glycine or its stimulator effect on the production of GABA, 100, 119

Minoxidil sulphate, effect on rat uterus, 101, 901

- , action on blood vessels compared with cromakalim, rat, 100, 605

Mitochondria, heart, Bay K 8644 modifies Ca transport and energy metabolism in, 101, 15

MK-329, reversal of anorectic effect of (+)-fenfluramine by, rat, 99, 65

MK801, prevention of neuronal loss produced by tetanus toxin by, hippocampus, rat, 101, 776

[³H]-**MK-801**, reduction of NMDA receptors with dithiothreitol increases binding, 101, 178

Monocytes, inhibition of 5-lipoxygenase product synthesis by MK-866 in, 100, 15

N^G-Monomethyl-L-arginine, effect on polycation-induced oedema, hind paw, rat, 101, 986

- , effect on vascular tone of blood vessels and endothelial cells, 101, 145

L-N^G-Monomethyl arginine, (L-NMMA), effect on anococcygeus muscle, mouse, 99, 602

- , effects on NANC transmission, anococcygeus, rat, 100, 749

N^G-Monomethyl-L-arginine, induces mucosal damage, rat, 99, 607

- , inhibitor of endothelial nitric oxide synthase, 101, 746
- , regional haemodynamic changes during oral ingestion of, Brattleboro rat, 101, 10

Morphine, effect of prolonged exposure to on preganglionic sympathetic nerve function, rat, 99, 247

Morphine, effect on circulatory responses to simulated haemorrhage, rabbit, 100, 421

- , effect on non-cholinergic nerve-mediated bronchoconstriction, guinea-pig, 101, 269

Motoneurone, spinal, effect of spantide (tachykinin antagonist) on, rat, 100, 711

Motor nerve terminal, effect of ryanodine on calcium-dependent release of transmitter at, mouse, 100, 114

Motor nerve terminals, enhancement of quantal transmitter release by ciguatoxin, frog, 99, 695

MR2266, inhibition of elevated arginine vasopressin secretion in response to osmotic stimulation and acute haemorrhage by, 99, 384

Muscarinic agonist, oxadiazole, potent and efficacious non-quaternary, 101, 575

Muscarinic autoreceptors, role in cholinergic analgesia, 101, 49

Muscarinic cholinoreceptors, developmental changes in effects of on Ca²⁺ channels, rat ventricular muscles, 99, 327

- , developmental changes in, rat ventricular muscle, 99, 334

Muscarinic hyperpolarization, action of soman on in parasympathetic ganglia, cat bladder, 99, 157

Muscarinic M₂-receptors, human, effect of chronic β_1 -adrenoceptor antagonist on, 101, 363

- , neuronal, evidence for in pulmonary cholinergic nerves, rat, 101, 73

Muscarinic receptors, non-quaternary oxadiazoles acting as full agonists at, 101, 575

- , effects of chain-length and unsaturation on affinity and selectivity at, 99, 622
- , stimulation and cyclic AMP-dependent effects, guinea-pig ventricular myocardium, 99, 401

Muscarinic receptor subtypes, characterization of in phosphoinositide metabolism, bovine tracheal smooth muscle, 99, 293

- , exhibit high selectivity for smooth muscle muscarinic receptors, 100, 150
- , interaction of parafluorohexahydrosiladiphenol at, *in vitro*, 99, 637

Muscarinic receptor subtypes, similarity to M₂ subtypes, rat hippocampus, 99, 753

- , stereoselective inhibition of by enantiomers of hexahydro-difenidol and acetylenic analogues, 99, 445

M₁ muscarinic receptor subtypes, heterogeneity of shown by 4-DAMP analogues, 100, 395

Muscimol, central inhibition by of release of vasopressin and oxytocin by osmotic stimulus, rat, 99, 529

- , mimics action of GABA in synaptic processing of somatosensory information in S1 cortex, cat, 100, 689

Muscle, skeletal, endogenous nitric oxide as modulator of, rabbit, 100, 463

Myeloperoxidase, in evaluation of effect of azapropazone on neutrophil migration, swine, 99, 233

Myenteric plexus, agonist action of dynorphin A(1-8) mediated through conversion to [Leu⁵]enkephalin in, guinea-pig, 101, 674

Myocardial damage, effects of antiarrhythmic agents (group III) on, canine heart, 99, 577

Myocardial enzyme release, prevention by ranolazine, baboon, 99, 5

Myocardial infarction, responsiveness to adrenoceptor agonists and calcium of non-infarcted hypertrophied muscles, rat, 99, 572

Myocardial infarction/reperfusion, antiarrhythmic activity of labetalol in, 100, 855

Myocardial ischaemia, adrenoceptors during, 100, 636

- , neutrophils, oedema and, rabbit, 100, 729

Myocardial ischaemia/reperfusion, effect of azapropazone on neutrophil migration in, rabbit, 100, 379

Myocardium, effects of PAF during perfusion, ischaemia and reperfusion of, guinea-pig, 101, 734

Myocytes, cardiac, blockade of the anti-adrenergic effect by pertussis toxin in, 101, 484

Myofilaments, effect of cocaine on responsiveness of, ventricular myocardium, ferret, 101, 679

Myo-inositol 1,4,5-triphosphate, noradrenaline-induced, action of α -human natriuretic peptide on, rabbit aorta, 99, 536

Myometrial guanylate cyclase, effects of ANP on, rat, 100, 341

Myometrium, effects of calmodulin antagonists on Ca-activated K-channels of, rat, 100, 353

Myotonic oscillations, spontaneous, in human erectile tissue mediated by generation and release of a cyclo-oxygenase product, 101, 375

N

Na⁺ activity, effect of isoprenaline and IBMX on, guinea-pig ventricular myocardium, 99, 401

Na deprivation, in muscarinic receptor-mediated catecholamine secretion in absence of extracellular Ca²⁺, cat, 101, 67

Na⁺:Ca²⁺ exchange, effects of ryanodine and caffeine on Ca-activated current carried by, ventricular myocytes, guinea-pig, 101, 399

- , mechanism, effect of disopyramide on, papillary muscle, guinea-pig, 101, 789

NaF, in modulation of adenylate cyclase activity in NG108-15 cell membranes by interaction with G_s and G_i, 100, 223

Na⁺-H⁺ exchange, in inotropic action of Bay K 8644 and of ouabain, guinea-pig atria, 100, 717

- , receptor-linked stimulation through protein kinase C activation as a mechanism for α_1 -adrenoceptor-mediated sustained positive ionotropic effect, 100, 207

Na⁺-K⁺-ATPase, factors influencing onset of ouabain inhibition of, myocardium, guinea-pig, 101, 337

- , in inhibition of smooth muscle contractions by phorbol esters, 99, 237

Na⁺-K⁺ current, inhibition by anaesthetics, 101, 190

Na⁺/K⁺-pump, activation by abrupt temperature increase, guinea-pig trachealis, 99, 369

- , inhibition of activity by divalent cations, intact peritoneal mast cells, rat, 100, 453

Naloxone, effect on circulatory responses to simulated haemorrhage, rabbit, 100, 421

Naltrexone, in inhibition of α -methyldopa-induced hypotension, rat, 99, 467

NANC, changes in membrane potentiation and cyclic nucleotide levels in response to inhibitory field stimulation of, guinea-pig, 100, 329

- , reduction of cholinergic neural responses in airways by opioids via inhibitory action on, guinea-pig, 100, 131

NANC contraction, in electrically field stimulated trachea, guinea-pig, 101, 875

- , inhibitory actions of prostaglandin E₁ on, guinea-pig bronchus, 101, 13

NANC-mediated responses, inhibition by conotoxin, 101, 437

NANC neurones, GABA_A receptor-stimulation of, ileocolonic junction, dog, 101, 460

NANC stimulation, effects of pyrogallol and hydroquinone on, rat

anococcygeus and bovine retractor penis muscles, 99, 194

NANC transmission, effect of arginine analogues on, anococcygeus, rat, 100, 749

Nasal congestion, inhibited by methoxyphenamine, rat, 101, 394

Natrinrole, antagonism of swim-stress-induced antinociception by, rat, 100, 685

Nedocromil sodium, inhibition of antigen-induced release of leukotrienes and histamine, human lung, 100, 247

—, inhibits chemotaxis of eosinophils induced by PAF and LTB₄, 99, 798

Negative inotropic effects, of disopyramide on papillary muscles, guinea-pig, 101, 789

Nematodes, actions of ACh and GABA on spontaneous contractions in, 101, 971

Neocortex, effects of hypomagnesia on transmitter actions in, 101, 1006

Neocortical activation, interference with subsynaptic mechanisms of in anaesthesia, 101, 61

Neonatal haemodynamics, effect of ethanol intoxication on, piglet, 101, 227

Nerve regeneration, impaired ornithine decarboxylase induction and diabetes-induced defects in, insensitive to ponalrestat, 101, 978

Neuroblastoma x glioma hybrid cells, endothelin and a Ca²⁺ ionophore raise cyclic GMP levels in, 101, 722

Neuroblastoma cells, NaF and guanine nucleotides modulate adenylyl cyclase activity in by interaction with G_s and G_i, 100, 223

Neurodegeneration, by tetanus toxin, prevention by MK801, hippocampus, rat, 101, 776

Neuroeffector transmission, effect of ω -conotoxin GVIA on, 101, 437

Neurogenic vasopressor response, GABA_B receptor-mediated inhibition of, pithed rat, 100, 365

Neurokinin A, binding with tachykinin receptors, rat spinal motoneurons, 100, 711

Neurokinin receptors, involvement in activation of alveolar macrophages, guinea-pig, 100, 417

Neuromedin U-8, porcine, motor response of human isolated small intestine and urinary bladder to, 99, 186

Neuromodulation, of sympathetic co-transmission by neuropeptide Y, vas deferens, guinea-pig, 100, 457

Neuromuscular junction, blockade of acetylcholine release at by β -bungarotoxin and crotoxin, mouse, 100, 301

—, effect of butanedione monoxime on, 100, 467

—, effect of ciguatoxin on, frog, 99, 695

—, inhibitory adenosine receptor at, antagonism by 1,3,8-substituted xanthines, 101, 453

—, interactions between adenosine and phorbol esters or lithium at, frog, 100, 55

Neuronal development, sensitivity of GABA_A-receptor complex to zinc, 99, 643

Neuropeptide Y, effect on α_2 -adrenoceptor-mediated cardiovascular responses, rat, 100, 840

—, effect on cardiac output, its distribution, regional blood flow and organ vascular resistances, pithed rat, 99, 340

—, effect on electrically-evoked contractions, vas deferens, rat, 100, 190

—, effects on basal and electrically stimulated ion secretion, jejunum mucosa, rat, 101, 247

—, effects of pre-contraction with endothelin-1 on -mediated contractions, vascular bed of rat tail, 101, 205

—, enhancement of dihydropyridine-sensitive component of response to α_1 -adrenoceptor stimulation by, rat mesenteric arterioles, 99, 389

—, neuromodulation of sympathetic co-transmission, vas deferens, guinea-pig, 100, 457

—, suppression of capsaicin-sensitive sensory nerve-mediated contraction by, guinea-pig airways, 99, 473

Neuropeptide Y fragments, effects on basal and electrically stimulated ion secretion, jejunum mucosa, rat, 101, 247

Neuropeptides, regulation of gastric mucosal integrity by endogenous NO, interactions with, rat, 99, 607

Neurosecretion, stimulation by tetrahydroaminoacridine at motor endplates, mammal, 100, 487

Neutral endopeptidase, effect of bradykinin-induced bronchoconstriction, guinea-pig, 101, 77

—, effects of inhibitors of, on relaxation of airway smooth muscle after epithelium removal, guinea-pig, 100, 73

—, in regulation of response to aerosilised substance P on lung resistance, guinea-pig, 100, 69

Neutrophil migration, effect of azapropazone on, swine, 99, 233

—, effect of azapropazone on, myocardial ischaemia/reperfusion injury, rabbit, 100, 379

Neutrophil-derived products, effect on vascular tone, rabbit thoracic aorta, 99, 553

Neutrophils, and oedema in myocardial ischaemia and reperfusion, rabbit, 100, 729

—, chemotaxis induced by inhibition by nedocromil sodium and sodium cromoglycate, 99, 798

—, inhibitory action of MK-886 on, 100, 15

—, sensitization with ovalbumin increases in response to aerosol of ovalbumin, guinea-pig pulmonary airway, 99, 679

Nicardipine, antagonist of Ca²⁺-induced contractions in K⁺-depolarized taenia preparations, guinea-pig, 100, 211

—, comparison of impaired vascular reactivity with endotoxin, 101, 913

—, effect on endothelin concentration-response, guinea-pig trachea and rat aorta, 100, 383

Nicergoline, inhibits T-type Ca²⁺ channels in hippocampal CA1 pyramidal neurones, rat, 100, 705

Nicorandil, antagonism by glibenclamide of vasodepressor effects of, 100, 413

—, cytoplasmic calcium and relaxation of coronary arterial smooth muscle by, 101, 157

—, effect on ATP-sensitive potassium channels in insulin-secreting cells, 99, 487

—, effects on triggered and spontaneous electrical activity, Purkinje fibres, dog, 99, 119

Nicotine, mediation of locomotor activity of, by intracerebral nicotinic receptors, 99, 273

—, vascular responses to, 100, 535

Nicotinic acetylcholine receptor, potencies for barbiturate binding to, *Torpedo*, 101, 710

Nicotinic receptor ion channels, effect of organophosphorus anticholinesterases on, muscle endplate, mouse, 101, 349

Nicotinic receptors, effect of agmatine on, 99, 207

Nifedipine, antagonism of contraction and Ca²⁺-influx evoked by ATP, bladder, guinea-pig, 100, 370

—, blocks K⁺-induced contractions in mesenteric vascular beds and aortic rings of spontaneously hypertensive rat, 100, 31

—, cardiovascular responses to, in presence of blood gas abnormalities, 100, 102

—, effect of disopyramide on papillary muscle pretreated with, guinea-pig, 101, 789

—, effect on responses to electrical field stimulation, β , γ -methylene ATP and ACh, urinary bladder, rat, 101, 494

—, in classification of α_1 -adrenoceptors in smooth muscle, 99, 197

Nigrostriatal system, effect of B-HT on, in normosensitive and supersensitive rat, 99, 509

Niguldipine, discriminates between α -adrenoceptor-mediated second messenger responses, cerebral cortex, rat, 100, 3

Nimodipine, antagonist of Ca²⁺-induced contractions in K⁺-depolarized taenia preparations, guinea-pig, 100, 211

—, effect on opioid withdrawal response, guinea-pig ileum, 101, 958

—, lack of effect of cerebral circulation despite increase in cardiac output, pig, 100, 277

—, synergistic internal carotid vasodilator effects of, conscious rat, 99, 830

Nippecotic acid, effect on histamine-induced inositol phosphate formation, guinea-pig cerebellum, rat and guinea-pig cortex, 100, 867

Nipponstrongylus brasiliensis, effect of regional blood flow in rat following sensitization to, 101, 93

Nitrate tolerance, prevention by N-acetyl-L- but not N-acetyl-D-cysteine, rat, 99, 825

Nitrendipine, antagonist of Ca²⁺-induced contractions in K⁺-depolarized taenia preparations, guinea-pig, 100, 211

—, blocks K⁺-induced contractions in mesenteric vascular beds and aortic rings of spontaneously hypertensive rat, 100, 31

—, effect on benzodiazepine withdrawal and tolerance, 101, 691

Nitric oxide, as a modulator of skeletal muscle microcirculation *in vivo*, rabbit, 100, 463

—, endothelin and a Ca²⁺ ionophore raise cyclic GMP levels of neuronal cell line via formation of, 101, 722

—, impairment of relaxations to by phorbol ester, rat aorta, 101, 432

—, in modulation of gastric mucosal integrity, rat, 99, 607

—, inhibition by L-glutamine of release of, endothelial cells, 101, 237

—, inhibitors of synthesis of, 101, 746

—, potassium-stimulated release of, cerebellar cortex, 101, 8

—, role in maintaining vascular integrity in endotoxin-induced intestinal damage, rat, 101, 815

—, role in NANC neurotransmission, 99, 194

—, role of Ca²⁺ concentrations in production of, 101, 489

—, stimulation of cyclic GMP in endothelial cells by, pig, 101, 152

—, use of oxyhaemoglobin in investigation of platelet aggregation

induced by, 101, 991

Nitric oxide synthase, inhibition by L-NMMA, L-NAME and L-NIO in platelet cytosol, 101, 325

L-N^G-Nitro arginine, (L-NOARG), effect on annoccygeus muscle, mouse, 99, 602

- , effects on NANC transmission, anococcygeus, rat, 100, 749
- , inhibits NANC relaxations, trachea, guinea-pig, 100, 661

N-Nitro-L-arginine methyl ester, effect on activities of endothelin-1 in presence of, rabbit ear, 101, 781

L-N^G-Nitro-arginine-methyl-ester, effects on NANC transmission, anococcygeus, rat, 100, 749

N^G-Nitro-L-arginine methyl ester, haemodynamic effects of, rat, 101, 625

- , inhibitor of endothelial nitric oxide synthase, 101, 746
- , regional haemodynamic changes during oral ingestion of, Brattleboro rat, 101, 10

Nitrogen oxides, endothelium-derived, role of L-arginine in formation of, 101, 145

Nitroglycerin, antagonism by glibenclamide of vasodepressor effects of, dog, 100, 413

- , effect on cytosolic calcium concentrations and on tension, coronary artery, pig, 101, 545
- , endothelium modulation of effects of on blood vessels, dog with pacing-induced heart failure, 101, 109

Nitroprusside, comparison with adibendan (BM 14.478), dog, 101, 686

- , non-specific cross-tolerance between and glyceryl trinitrate, rat, 99, 825
- , use of oxyhaemoglobin in investigation of platelet aggregation induced by, 101, 991

Nitrovasodilator, in *Rhodnius prolixus*, 101, 932

Nitrovasodilator drugs, effect on NANC relaxation of anococcygeus muscle, mouse, 99, 602

- , effect on NANC transmission, anococcygeus, rat, 100, 749

NK₁-receptor, mediates proliferative response of human fibroblasts to tachykinins, 100, 11

NK₂ receptors, evidence for heterogeneity of in pulmonary artery and trachea, 100, 588

NMDA, effects of hypomagnesia on neuronal responses induced by, neocortex, 101, 1006

- , effects of substance P analogues on responses to intrathecal injection of, mouse, 101, 307
- , interoceptive stimulus involvement in mediation of discriminative stimulus properties of (+)-N-allylnormetazocine, 99, 145

NMDA-induced behavioural responses, mediated through NMDA receptors with no effect on NK₁ receptors in spinal cord, 101, 307

NMDA receptor antagonists, CGP 37849 and CGP 39551, potent and novel, 99, 791

NMDA receptors, modulation by dithiothreitol, 101, 178

- , potentiation by endogenous glycine, 99, 285

L-NMMA, in role of NO in vascular integrity maintenance, intestinal endotoxin-induced damage, 101, 815

- , inhibitor of endothelium-dependent vasodilatation *in vitro*, 99, 408
- , mimics effect of endothelium removal on vasoconstriction, pulmonary artery, human and rat, 101, 166

NO-05-0328, a lipophilic GABA uptake blocker, effect in CA1, rat hippocampal slice, 99, 103

NO-05-0329, a lipophilic GABA uptake blocker, effect in CA1, rat hippocampal slice, 99, 103

L-NOARG, L-arginine-reversible inhibitor of endothelium-dependent vasodilatation *in vitro*, 99, 408

Nociceptors, actions of capsaicin on, neonatal spinal cord-tail, rat, 101, 727

- , effect of 5-HT on mechanical responsiveness of in normal and arthritic rats, 101, 715

Nociceptive fibres, action of resiniferatoxin on, neonatal rat tail, 99, 3213

Nociceptive reflexes, spinal effects of injectable anaesthetics on, rat, 101, 563

Non-adrenergic, non-cholinergic inhibitory nerves, effect of epithelium removal on relaxation of tracheal smooth muscle induced by stimulation of, guinea-pig, 100, 73

Non-adrenergic, non-cholinergic relaxation, effect of nitrovasodilator drugs on, mouse anococcygeus muscle, 99, 602

Non-adrenergic, non-cholinergic relaxations, inhibition by L-N^G-nitroarginine, tracheal smooth muscle, guinea-pig, 100, 661

Non-cholinergic innervation, effects of atropine and α , β -methylene ATP on, urinary bladder, rat and guinea-pig, 99, 493

Non-cholinergic neurotransmission, inhibitory effect of streptozotocin-induced diabetes on, rat, 101, 411

Non-infarcted muscle, responsiveness to adrenoceptor agonists and calcium, rats with chronic myocardial infarction, b99b, 572

Noradrenaline, action on coronary arteries: selective release of EDRF, rat, 100, 552

- , as co-transmitter with ATP at vascular neuroeffector junction, 99, 279
- , blockade of re-uptake on evoked tritium overflow, mouse vasa deferentia and rat cortex slices, 101, 762
- , cardiovascular effects of central injection of ACh in plasma levels of, 100, 471
- , cotransmitter with ATP in sympathetic nerves to hepatic artery, rabbit, 99, 835
- , effect of aging on contractions to, vascular smooth muscle, 100, 889
- , effect of ω -conotoxin GIVA on, small mesenteric artery, rat, 100, 180
- , endogenous overflow, characterization of presynaptic vascular muscarinic receptors inhibiting, rat, 99, 223
- , in bradykinin-induced vasoconstriction of mesenteric artery, rat, 101, 344
- , in classification of α_1 -adrenoceptors in smooth muscle, 99, 197
- , response of protein kinase C-mediated contractile responses to, diabetic rat, 101, 465
- , response of spinal artery to, 101, 200
- , in synthesis of IP₃, inhibitory action of α -human atrial natriuretic peptide on, rabbit aorta, 99, 536
- , responses to mediated by α -adrenoceptors *in vitro*, subcutaneous resistance arteries, human, 99, 31
- , roles of intracellular and extracellular-derived Ca²⁺ in α -adrenoceptor-mediated contractions to, blood vessels, rabbit, 99, 253

Noradrenaline contraction, α_1 -adrenoceptor subtypes involved in, 101, 662

Noradrenaline outflow, effects of pinacidil actions on neuromuscular junction by bioassay of, 101, 581

Noradrenaline, plasma, role in regulation of platelet and vascular α_2 -adrenoceptors, 101, 329

Noradrenaline release, inhibited by ω -conotoxin in rabbit ear artery and rat and mouse atria, 101, 437

- , neuropeptide Y neuromodulates co-transmission by inhibition of, vas deferens, guinea-pig, 100, 457

Noradrenergically-mediated responses, inhibition by conotoxin, 101, 437

NPY fragments, effect on electrically-evoked contractions, vas deferens, rat, 100, 190

NPY, responsiveness of coronary artery rings to modified by hypoxia or simulated myocardial ischaemia, sheep, 99, 774

Nucleus accumbens, actions of cocaine on, rat, 99, 736

- , effect of cholecystokinin sulphated octapeptide on endogenous dopamine release in, rat, 99, 845
- , effects of acute and chronic clozapine on dopamine release and metabolism in, rat, 100, 774

Nucleus tractus solitarii, cardiovascular effects of clonidine in range of ages, rat, 100, 547

- , role of GABA receptors in ethanol inhibition of baroreflex bradycardia, 101, 733

O

Ocular hypotension, effect of L-662,583 on, experimental animals, 99, 59

Oedema, contribution of bradykinin to, 101, 739

Oedema, paw, polycation-induced, characteristics of, 101, 986

8-OH-DPAT, comparison with MDL 73005EF as a 5-HT_{1A} selective ligand, effect on models of anxiety, 99, 343

- , effect on effect of 5-HT, hippocampus, rat, 101, 171
- , hypotensive effects of, following stereotaxic microinjection into ventral medulla, rat, 99, 713
- , in definition of heterogeneity of α_2 -adrenoceptors, rat cortex but not human platelets, 99, 481
- , mechanism in mediation of inhibition of plasma insulin in spontaneously hypertensive rat, 100, 173

Okadaic acid, electrical effects of on sinus node, rabbit, 101, 241

Ondansetron, effect on visceral pain reflex induced by duodenal distension, 100, 497

- , (GR38032), effect on DiMe-C7-induced changes in dopamine and 5-HT metabolism, rat forebrain, 99, 227

κ -Opiate receptors, effect on ⁴⁵Ca influx into synaptosomes, 101, 140

κ -Opioid, receptor activation reduces increase in AVP secretion evoked by osmotic stimulation and acute haemorrhage, 99, 384

κ -Opioid agonists, effect on renal excretion of water and electrolytes, rat, 99, 181

κ -Opioid antinociception, CI-977, 101, 183

κ -Opioid receptor, novel potent and selective agonists for, 101, 944
Opioid receptor agonists, effect on circulatory responses to haemorrhage rabbit, 100, 421
 δ -Opioid receptor binding sites, rat spinal cord, 100, 319
Opioid receptors, activation of inhibits non-cholinergic nerve stimulation induced bronchoconstriction, guinea-pig, 101, 269
 δ -Opioid receptors, antagonism of swim-stress-induced anti-nociception by, rat, 100, 685
Opioid receptors, binding and *in vitro* depression of nociceptive responses, rat, 99, 503
—, modulation of cholinergic neurotransmission in airways by, guinea-pig, 100, 131
Opioid receptors subtypes, behavioural and ECoG effects of selective agonists at, locus coeruleus, rat, 101, 655
Opioid withdrawal, effect of clonidine, nimodipine and diltiazem on, guinea-pig ileum, 101, 958
—, enteric neurones recruited during, guinea-pig ileum, 101, 908
Opioids, and ganglionic transmission, 101, 505
—, antinociceptive actions mediated by, dorsal horn, rat, 101, 477
Org10325, effects on cardiac and vascular tissue, 100, 735
ORG30029, calcium sensitising effects of in skinned fibres, rat, 100, 843
Organ vascular resistance, effect of neuropeptide Y on, 99, 340
Organophosphates, effect of nicotinic receptor ion channels, muscle endplate, mouse, 101, 349
Organophosphorus, effect on latencies of action potentials in skeletal muscle, mouse, 99, 721
Ornithine decarboxylase, impaired induction of activity in streptozotocin-diabetic rat prevented by ponalrestat, 101, 978
Osmotic damage, sensitivity to, colonic mucosa, human, 99, 289
Ouabain, effect in perfused adrenal glands, role of Na^+ in muscarinic receptor-mediated catecholamine secretion, cat, 101, 67
—, effect on guinea-pig isolated trachealis, effect of cooling, 99, 369
—, inhibition of Na,K -ATPase by factors influencing, 101, 337
Ouabain inotropic effect, role of $\text{Na}-\text{H}$ exchange in, guinea-pig atria, 100, 717
Oxadiazoles, acting as full agonists at muscarinic receptors, 101, 575
Oxazepam, pharmacokinetic-pharmacodynamic modelling of anticonvulsant effect of, rat, 99, 53
Oxyhaemoglobin, in platelet inhibition, 101, 991
Oxiracetam, effect on field potentials of hippocampus, rat, 99, 189
Oxotremorine, effect of epithelium removal on actions of, trachea, guinea-pig, 100, 516
Oxytocin, central inhibition by γ -aminobutyric acid and muscimol of release of, rat, 99, 529

P

P_{2x} -receptors, characterization of, ear artery, rabbit, 101, 640
—, suramin as antagonist at, rabbit ear artery, 101, 645
PAF, contribution of platelets and airway smooth muscle in -induced bronchial hyperresponsiveness, rabbit, 101, 31
—, effect of anti-asthma drugs on eosinophil accumulation induced by PAF, pulmonary airways, guinea-pig, 99, 267
—, effect on contractile force and ^{45}Ca fluxes, atria, guinea-pig, 100, 305
—, effects of during perfusion, myocardial ischaemia and reperfusion, guinea-pig, 101, 734
—, enhancement of effect of in rh-GMCSF-treated guinea-pigs, 100, 399
—, from nematode-sensitized rats, alters blood flow to stomach and small bowel, 101, 93
—, influence of plasma protein content and platelet number of potency of, rabbit, 100, 163
—, inhibitory effects of MK-886 on metabolism in human phagocytes, 100, 15
—, involvement in bradykinin-induced plasma exudation, guinea-pig airways, 101, 739
—, relationship between tumour necrosis factor, eicosanoids and, as mediators of endotoxin-induced shock, mice, 99, 499
—, role of eicosanoids in increases of vascular permeability induced by, airway, rat, 101, 896
PAF antagonist, influence of plasma protein content and platelet number on potency of, rabbit, 100, 163
PAF sites, for *in vivo* interaction of PAF species- and drug-dependent, 99, 164
Pain reflex, visceral, effect of granisetron and ondansetron on, 100, 497
Palmitoyl carnitine, interactions with endothelium, rat aorta, 100, 241
Pancreatic β -cells, inhibition by phentolamine and yohimbine of ATP-sensitive K^+ channels in, mouse, 101, 115
Papillary muscle, influence of N-ethylmaleimide on action potential and force of contraction of, guinea-pig, 101, 406
Paracetamol, prostacyclin and inflammatory pain, 101, 869
Parfluorohexahydrosiladiphenidol, interaction at muscarinic receptors *in vitro*, 99, 637
Parasympathetic ganglia, action of soman on muscarinic hyperpolarization in, cat bladder, 99, 157
[D-Pen²,D-Pen⁵]enkephalin, binding sites in rodent spinal cord, 100, 319
[³H]-[D-Pen²,D-Pen⁵]enkephalin, high affinity, saturable binding of, rodent spinal cord, 100, 319
Penile erection, inhibitory effect on 5-HT on, rat, 101, 698
Pentagastrin, effect of stimulation of oxytic cell with after systemic neonatal pretreatment with capsaicin, stomach, rat, 100, 491
Pentobarbitone, effect on axonal currents, olfactory cortex, rat, 101, 217
Pentoxifylline, effect on vascularisation and fibre type of rat skeletal muscle subjected to limited blood supply, rat, 99, 786
Pentylenetetrazol, effects on calcium currents of thalamic neurones, 100, 800
—, mechanism of anticonvulsant actions of succinimides against seizures induced by, 100, 800
Peptidase inhibitors, role in conversion of dynorphin A(1-8) to [Leu^5]enkephalin, myenteric plexus, guinea-pig, 101, 674
Peptide 401, anti-inflammatory activity resulting from mast cell degradation *in vivo*, rat, 99, 350
Peptide histidine isoleucine (PHI), co-release with VIP by peripheral and central vagal stimulation, dog stomach, 100, 231
Peptide YY, effect on electrically-evoked contractions, vas deferens, rat, 100, 190
Pertussis toxin, blockade of the anti-adrenergic effect by, guinea-pig, rat and human heart, 101, 484
—, effect on contractile reactivity of mesenteric and renal arteries, rat, 101, 859
—, in mediation of endothelium-dependent vasodilatation, mesenteric artery, rat, 100, 427
—, no effect on peripheral prejunctional α_2 -adrenoceptor-mediated responses and on endothelium-dependent relaxations, rat, 100, 348
Petit mal, GABA current blockade in effects of anticonvulsants and convulsants on thalamic neurones, 100, 807
—, low-threshold calcium current as a mechanism of action in, 100, 800
PGD₂, role of prostanoid receptors in bronchoconstrictor effect of, guinea-pig, 100, 761
PGE₂, effect on adrenergic neurotransmission in atrial and ventricular preparations, guinea-pig, 99, 717
Phaclofen, effect on isolated vas deferens and ileum, guinea-pig, 99, 422
—, inactive as blocker of (—)-baclofen-induced effects in synaptic processing of somatosensory information in S1 cortex, cat, 100, 689
Phaeochromocytoma PC12 cells, effect of suramin on ATP-activated current in, 101, 224
Pharmacokinetics, of theophylline on myocardial reactive haemias, dog, 100, 95
Phenidone, effect of Sephadex-induced eosinophilia, rat, 101, 821
Phenoxybenzamine, effects of, indicate role of α_1 -adrenoceptors for influence of basal EDRF, 99, 77
Phenthonium, enhances spontaneous release of ACh, motor nerve terminals, rat, 100, 441
Phentolamine, in inhibition of ATP-sensitive K^+ channels, pancreatic β -cells, mouse, 101, 115
—, responses to cromakalim and pinacidil in smooth and cardiac muscle by use of, 100, 201
Phenylephrine, effect of activation of potassium conductance in inhibition by carbachol of positive inotropic responses to, rabbit, 99, 661
—, elicits contractions in human subcutaneous arteries in presence of yohimbine, 99, 31
Pilocarpine, effects of acute and chronic lithium treatment on phosphoinositide hydrolysis stimulated by, mouse brain, 101, 39
Pinacidil, characterization of responses to in smooth and cardiac muscle by use of selective antagonists, 100, 201
—, cytoplasmic calcium and relaxation of coronary arterial smooth muscle by, 101, 157
—, effect on ATP-sensitive potassium channels in insulin-secreting cells, 99, 487
—, effect on rat uterus, 101, 901
—, inhibits neuromuscular transmission, mesenteric arteries, rabbit and guinea-pig, 101, 581
—, opposing effects on K^+ channels, 100, 143
—, study of adrenergic-cholinergic interactions in left atria using,

rabbit, 99, 661

Pinaverium, effect on voltage-activated Ca channel currents, single smooth muscle cells, rabbit jejunum, 99, 374

(\pm)-**Pindolol**, effect of 5-HT_{1A} receptor antagonist action of in von Bezold-Jarisch reflex, rat, 100, 757

Pindolol, influence on cold adaptation, rat, 99, 673

Pirmenol, use-dependent effects on V_{max} and conduction, ventricular myocardium, guinea-pig, 99, 815

Phenylephrine, endotoxin impaired responsiveness to, rat, 101, 913

—, in classification of α_1 -adrenoceptors in smooth muscle, 99, 197

Phenylethanolaminotetralines, inhibition of intestinal motility by: new class of β -adrenoceptor, 100, 831

($-$)-**N⁶-Phenylisopropyladenosine**, effect on myocardial inositol phosphate content and force of contraction, 101, 829

Phosphanthotoxin, non-NMDA antagonism by, *in vivo*, 101, 968

Phorbol, in role of protein kinase C-mediated contractile responses of arteries, diabetic rat, 101, 465

Phorbol ester, impairment of relaxations to ACh and NO by, rat aorta, 101, 432

Phorbol esters, in depolarization of dorsal root of primary afferent nerves, rat spinal cord, 100, 656

—, in inhibition of smooth muscle contractions through activation of Na⁺-K⁺-ATPase, 99, 237

—, inhibitory effect on release of EDRF, pig aortic endothelial cells, 99, 565

—, interactions between adenosine and or lithium at neuromuscular junction, frog, 100, 55

Phorbol myristate acetate, mechanisms for cardiac depression induced by, rat heart, 100, 826

Phosphatidylinositol turnover, effect of endothelin on stimulation of, guinea-pig trachea, 100, 383

—, turnover, stimulated by azanorbornane derivatives, 101, 575

Phosphatidylserine, effects on decreased cardiovascular response to clonidine, nucleus tractus solitarius, old rat, 100, 547

Phosphodiesterase, effect on contractile reactivity of mesenteric and renal arteries, rat, 101, 859

—, effects of selective inhibition by on cyclic AMP hydrolysis, cerebrum, rat, 99, 47

Phosphodiesterase inhibition, effect of carbachol on contraction, intracellular Na⁺ activity and cyclic AMP, papillary muscles exposed to, guinea-pig, 99, 401

Phosphodiesterase III inhibitor, haemodynamic profile of, 101, 686

Phosphoinositide hydrolysis, stimulation by thyrotropin releasing hormone and di-methyl proline-TRH, GH₃ pituitary cells, 101, 615

Phosphoinositide metabolism, characterization of muscarinic receptor subtype in, bovine tracheal smooth muscle, 99, 293

Phosphoinositides, effects of lithium treatment on pilocarpine-stimulated hydrolysis of, mouse brain, 101, 39

Phospholipase, activities affected by cationic factors, human lung, 100, 447

Phospholipase A₂, blockade of acetylcholine release by at motor nerve terminals, mouse, 100, 301

Phospholipase C, effect of ibudilast on, guinea-pig lung, 100, 564

Phosphono-analogues of GABA, antagonism of GABA_B-receptor-mediated responses by, ileum and vas deferens, guinea-pig, 99, 422

Phosphoramidon, effect on bradykinin-induced bronchoconstriction, guinea-pig, 101, 77

Phosphorylation of myosin, effect of Ca in spasmogenic responses, dog tracheal muscle, 100, 41

Plasma renin activity, effect of intracisternal injection of ACh on, dog, 100, 471

Platelet-activating factor, inhibition of allergen-induced airway hyper-reactivity, guinea-pig, 99, 396

Platelet α_2 -adrenoceptors, up-regulation induced by reserpine, dog, 101, 329

Platelet aggregation, benzodiazepine analogues inhibit arachidonate-induced, human, 101, 920

—, inhibition of by endothelin-1, 99, 303

—, role of L-arginine:nitric oxide pathway in, 101, 325

Platelet inhibition, by polymorphonuclear leukocytes, human, 101, 253

Platelets, augmentation of induced contractions of blood vessels by release of neutrophil-derived agents, 99, 553

—, effect of sanguinidan on, human, 99, 612

—, endogenous NO from L-arginine as modulator of platelet and white cell-vessel wall interaction, rabbit, 100, 463

—, from actively sensitized guinea-pig transferred to normal animals respond to specific antigen with activation of circulating leucocytes, 100, 185

—, human, identification of α_2 -adrenoceptors with [³H]-RX821002, 100, 862

—, human, lack of heterogeneity of α_2 -adrenoceptors in, as defined by 8-OH-DPAT, RU 24969 and methysergide, 99, 481

—, influence of plasma protein content and platelet number on potency of PAF and RP 59227, rabbit, 100, 163

—, PAF-induced hyperresponsiveness, contribution of in, rabbit, 101, 31

—, use of oxyhaemoglobin in investigation of inhibition of, 101, 991

Poly-L-arginine, oedema induced by, rat hind paw, 101, 986

Polymyxin B, effect on endplate potentials, neuromuscular junction, frog, 100, 55

Polymorphonuclear leukocytes, inhibition of platelet activation by, human, 101, 253

Ponalrestat, impaired induction of ornithine decarboxylase activity in streptozotocin-induced rat prevented by, 101, 978

Portal vein, role of adenosine in hyperaemic response of hepatic artery to occlusion of, 100, 626

Positive inotropic effect, by CGRP by increase of calcium inward current, guinea-pig atria, 100, 27

Postjunctional α_1 -adrenoceptors, in mediation of initial transient contraction in isolated blood vessels, rabbit, 99, 253

Postjunctional α_2 -adrenoceptors, in mediation of initial transient contraction in isolated blood vessels, rabbit, coupling to dual sources of Ca²⁺, 99, 253

Potassium channel activator, haemodynamic effect of, pig, 101, 509

Potassium channel blockade, induction of non-specific airway hyper-reactivity by, rat, 101, 541

Potassium channel blockers, and effects of cromakalim on smooth muscle guinea-pig bladder, 99, 779

Potassium channel openers, effects of rat uterus, 101, 901

Potassium chloride, effect of ω -conotoxin GIVA on, small mesenteric artery, rat, 100, 180

—, effect of epithelium removal on actions of, trachea, guinea-pig, 100, 516

—, role of epithelium in modulation of tracheal responses to, 101, 257

Potassium current, low excitability of tracheal smooth muscle cell upon depolarization due to, dog, 200, 507

Potassium membrane conductance, action of cromakalim on, heart myocytes, frog, 100, 581

Prazosin, antagonises contractions to noradrenaline, thoracic aorta, rabbit, 101, 662

—, ineffectiveness in blocking of lithium-induced effects on blood glucose levels and insulin secretion, rat, 100, 283

Prejunctional α_2 -adrenoceptors, differ in rat vas deferens and atrium, comparison with α_{2A} - and α_{2B} -ligand binding sites, 101, 285

Prejunctional muscarinic receptors, effect of gallamine on ACh at, guinea-pig, 99, 582

Presynaptic inhibition, action of (\pm)-baclofen, rat motoneurones, 99, 413

Presynaptic receptors, characterization of, submucosal plexus, guinea-pig, 101, 925

—, inhibit endogenous noradrenaline overflow in portal vein, rat, 99, 223

Procaine, and effects of cromakalim on smooth muscle, guinea-pig bladder, 99, 779

Prodrug CGP22979, mechanism of activation of, rat, 99, 15

Progesterone, exposure of myometrium to responsible for pregnancy-induced decrease in effects of ANP, rat, 100, 341

Propentofylline (HWA 285), effect of extracellular purines and excitatory amino acids in CA1 of rat hippocampus during ischaemia, 100, 814

Propranolol, antagonist at atypical β -adrenoceptor, jejunum, rabbit, 101, 27

—, effect on established ventricular fibrillation, 100, 503

—, ineffectiveness in blocking of lithium-induced effects on blood glucose levels and insulin secretion, rat, 100, 283

—, influence on cold adaptation, rat, 99, 673

—, modification of ischaemic-induced contraction in circumflex coronary artery by, sheep, 100, 407

Prostacyclin, enhancement of endothelial production of by inhibitors of protein synthesis, 101, 799

—, histamine induced release of potentiated by interleukin-1, 101, 703

—, release of by ET-1 inhibits platelet aggregation, rabbit, 99, 303

—, role in antinociceptive activity of paracetamol in inflammatory pain, 101, 869

Prostacyclin receptors, activation of adenylate cyclase in cell lines NG108-15 and NCB-20, 99, 309

Prostaglandin, in maintenance of muscle tone in fundic region of guinea-pig stomach, 101, 809

Prostaglandin E₁, inhibitor actions of on NANC contraction, guinea-pig bronchus, 101, 13

Prostaglandin endoperoxide, receptor activation mediation of bradykinin-induced contraction by, 99, 461

Prostaglandin endoperoxides, in mediation of arachidonic acid-induced vasoconstriction in diabetic and control kidney, rat, 100, 336

Prostaglandins, competition between pro- and anti-inflammatory effects in reactions involving release of endogenous inflammatory mediators *in vivo*, hamster cheek pouch, 99, 449

- , effect of fenbufen on clenbuterol-induced hypertrophy of cardiac muscle, effect on plasma, 101, 835
- , in regulation of gastric mucosal integrity by endogenous nitric oxide, interaction with, rat, 99, 607
- , increase in by ethanol, gastric and colonic mucosa, human, 99, 289
- , modulation of acute mast cell-dependent inflammation, 99, 449

Prostanoid receptors, stimulate gastric and ileal anion secretion, guinea-pig, 101, 889

Prostanoids, stimulant effect of capsaicin on responses to field stimulation mediated by, 99, 152

Protein kinase C, action of resiniferatoxin and capsaicin on peripheral nociceptors via phorbol ester-like stimulation of, neonatal rat tail, 99, 323

Protein kinase C, effects of inhibitors on α_1 -adrenoceptor-mediated inotropic responses, ventricular papillary muscle, rat, 100, 207

- , in contractile responses of arteries, diabetic rat, 101, 465
- , in depolarization of primary afferent nerves, rat spinal cord, 100, 656
- , in phorbol ester-induced cardiac dysfunction, 100, 826
- , influence on noradrenaline release and phosphoinositide hydrolysis in chromaffin cells, 101, 521
- , role in stimulus-activation coupling in superoxide generation with a variety of stimuli, 100, 819

Protein phosphorylation, contractile, role of Org10325, 100, 735

G-Proteins, pretreatment with pertussis toxin causes reduction of functional, renal cortex, rat, 100, 63

[D-Pro²,D-Trp^{7,9}]SP, attenuates oedema when co-administered with capsaicin, mouse ear, 99, 516

Pulmonary anaphylaxis, potentiation by gallamine, guinea-pig, 99, 582

Purine catabolites, effect of propentofylline on during ischaemia, rat hippocampus, 100, 814

Purinergic nerves, antagonism by suramin, guinea-pig urinary bladder and taenia coli, 99, 617

Purinergic transmission, in lower urinary tract, rabbit, 101, 212

- , role of Ca channels in excitatory mechanical action of, urinary bladder, rat, 101, 494

Purines, mediating contraction in colon, rat, 100, 753

P₂-Purinoceptor, [³H]- α,β -methylene ATP as radioligand for, urinary bladder, rat, 101, 291

Purinoceptors, action of in articular blood vessels, rabbit knee joint, 99, 379

- , antagonism by suramin, guinea-pig, 99, 617
- , in noradrenergic-purinergic co-transmission, hepatic artery, rabbit, 99, 835
- , ontogeny of, urinary bladder and duodenum, rat, 100, 874

A₂ Purinoceptors, in endothelium-dependent relaxation, thoracic aorta, rat, 100, 576

- , transient vagally-mediated bronchospasm induced by stimulation of, 100, 251

P₂-Purinoceptors, mediate formation of 1,4,5-inositol trisphosphate via a pertussis toxin-sensitive pathway, renal cortex, rat, 100, 63

- , mediation of response to single nerve stimulus by non-cholinergic transmitter through activation by, 99, 493

P_{2x}-Purinoceptors, desensitization by mATP, *in vivo* and *in vitro*, rat, 99, 820

Purkinje fibre, cardiac, rate-dependence of combined electrophysiological effects of lidocaine and sotalol in, dog, 99, 124

- , effects of nicorandil on by abolition of spontaneous and triggered electrical activity, 99, 119

Puromycin, enhancement of prostacyclin release by inhibition of protein synthesis, 101, 799

Pyriform complex, effect of zinc on GABA response, guinea-pig, 99, 643

Pyrogallol, effect on response to NANC stimulation, rat anococcygeus and bovine retractor penis muscle, 99, 194

PPY fragments, effect on electrically-evoked contractions, vas deferens, rat, 100, 190

Q

Quinapril, *in vivo* inhibition following, rat, 100, 651

Quinidine, and effects of cromakalim on smooth muscle, guinea-pig bladder, 99, 779

Quinine, effect on release of catecholamines, bovine cultured chromaffin cells, 99, 548

Quisqualate, excitation by, blocked by philanthotoxin, brainstem, rat, 101, 968

Quisqualate receptor, in mediation of monosynaptic transmission from myelinated primary afferents to motoneurones, rat spinal cord, 100, 850

R

Radioligand binding, of P₂-purinoceptors, urinary bladder, rat, 101, 291

Ranolazine, prevention of myocardial enzyme release by in model of ischaemia with reperfusion, baboon, 99, 5

⁸⁶Rb efflux, increase by pinacidil via ATP-sensitive K⁺ channel opening and effect of cromakalim on, canine mesenteric artery, 100, 143

Receptor binding, assessment of imiloxan as, 99, 560

Regional myocardial function, effect of elgodipine on, pig, 99, 355

- , effect of EMD 52692 on, pig, 101, 605

Regional myocardial oxygen consumption, effect of elgodipine on, pig, 99, 355

Renal failure, acute, renal specificity of gludopa in, 101, 301

Renal failure, chronic, vasopressin and the pathogenesis of, 100, 79

Renal vascular responsiveness, to arachidonic acid in experimental diabetes, 100, 336

Renin-angiotensin system, evidence for in interlobar renal arteries, pig, 101, 89

Reperfusion, microvascular permeability dependent on circulating neutrophils, 100, 729

Reserpine, induces vascular α_2 -adrenergic supersensitivity and platelet α_2 -adrenoceptor up-regulation, dog, 101, 329

Resiniferatoxin, in stimulation of peripheral nociceptors in neonatal rat tail, *in vitro*, 99, 323

Retina, development of tolerance to effects of vagabatrin on GABA release from, rat, 100, 324

Rhodnius prolixus, salivary vasodilator in, 101, 932

Ridogrel, effect on collagen-induced platelet activation, cat, 99, 631

Rilmenidine, involvement of imidazoline receptors in central hypotensive effect of, rabbit, 100, 600

Ritodrine, acting at atypical β -adrenoceptor, jejunum, rabbit, 101, 27

- , in inhibition of intestinal motility, 100, 831

Ro20 1724, effect on cyclic AMP hydrolysis, rat cerebral cortex, 99, 47

Ro 31-6930, bronchodilator properties of, guinea-pig, 100, 289

Rolipram, effect on cyclic AMP hydrolysis rat cerebral cortex, 99, 47

RP 49356, antagonism by glibenclamide involves ATP-sensitive K⁺ channel, rat uterus, 101, 901

- , effect on ATP-sensitive potassium channels in insulin-secreting cells, 99, 487

RP 59227, influence of plasma protein content and platelet number on potency of rabbit, 100, 163

RS 30026, potent and effective calcium channel agonist, 99, 687

RU 24969, effect on e.p.s.p., rat hippocampus, 101, 171

- , in definition of heterogeneity of α_2 -adrenoceptors in rat cortex but not in human platelets, 99, 481

Ruthenium red, inhibition of effects of capsaicin on dorsal root ganglion cells, rat, 101, 423

- , inhibition of oedema formation and increased blood flow induced by capsaicin, rabbit skin, 99, 7
- , inhibits toluene diisocyanate-induced contractions, urinary bladder, rat, 100, 886

RX77368, comparison with thyrotropin releasing hormone on pituitary GH₃ cells, 101, 615

[³H]-RX821002, new antagonist for platelets, 100, 862

Ryanodine, effect of disopyramide on papillary muscle pretreated with, guinea-pig, 101, 789

- , effect of endothelin on I_{Ca} in presence of, guinea-pig heart cells, 99, 437
- , effects on Ca-activated current, ventricular myocytes, guinea-pig, 101, 399
- , effect on endothelin concentration response, guinea-pig trachea, 100, 383
- , facilitation of calcium-dependent release of transmitter by, neuromuscular junction, mouse, 100, 114
- , reveals multiple contractile and relaxant mechanisms in vascular smooth muscle, 100, 677

S

Salbutamol, acting at atypical β -adrenoceptor, jejunum, rabbit, 101, 27

- , bronchodilator properties of guinea-pig, 100, 289
- , in inhibition of intestinal motility, 100, 831
- Salivary gland**, dopamine receptor mediates the hyperpolarization of acinar cells in, cockroach, 101, 103
- , trophic effects of substance P and vasoactive intestinal peptide on, 101, 853
- Saphenous vein**, effectiveness of α_1 - and α_2 -adrenoceptor activation, dog, 101, 387
- Saponin-treated muscle**, calcium sensitising effects of ORG30029 on, rat, 100, 843
- Sarafotoxin**, structure-activity of, guinea-pig bronchus, 101, 232
- Sarafotoxin-S6b**, regional responses to i.v. bolus injections of, in presence and absence of indomethacin, 100, 158
- , vasoconstrictor activities of, mesenteric arterial bed, rat, 101, 81
- Sarcoplasmic reticulum**, effect of endothelin on, guinea-pig cardiac cells, 99, 437
- Scorpion toxin**, in formation of inositol phosphates, ileum, guinea-pig, 99, 217
- SDZ 64-412**, PAF receptor antagonist, in prevention of non-specific airway hyperreactivity, guinea-pig, 99, 396
- Second messengers**, independence of in action of capsaicin on peripheral nociceptors of neonatal spinal cord-tail, rat, 101, 727
- Seizures**, modulation of susceptibility by strychnine-insensitive glycine recognition site of NMDA receptor/ion channel complex, 99, 285
- Senescence**, reduced high affinity α_1 -adrenoceptors in liver in, rat, 101, 650
- Senktide**, pharmacological analysis of binding to NK₃ tachykinin receptors, ileum longitudinal muscle-myenteric plexus and cerebral cortex, guinea-pig, 99, 767
- Sensory nerves**, suppression by neuropeptide Y in, guinea-pig airways, 99, 473
- Sensory nerves, peripheral**, physiological role in acid secretory responses to gastric distension, gastric mucosa and coeliac ganglion, 100, 491
- Sephadex**, effects of drugs on eosinophilia induced by, rat, 101, 821
- Septide**, in effect of spantide on rat spinal motoneurones, 100, 711
- D-Serine**, in increase of potency of NMDA in seizure induction, mouse, 99, 285
- [D-Ser²,Leu⁵,Thr⁶]enkephalin**, effect on single fibre, nicotinic, excitatory synaptic potential, hypogastric ganglion, mouse, 101, 505
- Siguazodan**, effect on human platelet function, 99, 612
- SIN-1**, use of oxyhaemoglobin in investigation of platelet aggregation induced by, 101, 991
- Sinus node cells**, electrical effects of okadaic acid on, rabbit, 101, 241
- SK7F 100330-A**, potent histamine H₁-receptor antagonist, cerebellum and cerebral cortex, rat and guinea-pig, 100, 867
- SK7F S-106203**, as a potent, selective and competitive antagonist of leukotriene C₄, leukotriene D₄ and leukotriene E₄ vascular responses, rat, 100, 195
- Skeletal muscle**, effect of fenbufen on, rat, 101, 835
- Skeletal muscle inhibition**, by chloroquine, 101, 133
- Sleep**, role of opioid mechanisms in locus coeruleus in mediation of soporific effects of agonists at opioid receptors, 101, 655
- Slow inward current**, increase in spontaneous activity of sinus node pacemaker cells by okadaic acid enhances, 101, 241
- Small intestine**, human, motor response to porcine neuromedin U-8, 99, 186
- Smooth muscle**, adrenoceptors involved in, stomach, 101, 809
 - , airway, characterization of stereospecific binding sites for inositol 1,4,5-trisphosphate in, 99, 297
 - , airway, distribution of β_1 - and β_2 -adrenoceptors in, mouse, 99, 136
 - , antagonism of purinoceptors by suramin in, 99, 617
 - , aorta, inhibitory action of α -human atrial natriuretic peptide on noradrenaline-induced synthesis of IP₃, rabbit, 99, 536
 - , atropine-resistant relaxation induced by high K⁺ in, rat and pig, 100, 401
 - , effects of calmodulin antagonists on, rat myometrium, 100, 353
 - , human small intestine and urinary bladder, effect of porcine neuromedin U-8 on, 99, 186
 - , inhibition by phorbol esters through activation of Na⁺-K⁺-ATPase, 99, 237
 - , membrane hyperpolarization, cyclic nucleotide levels and relaxation in, guinea-pig, 100, 329
 - , multiple contractile and dilator mechanisms in, 100, 677
 - , L-N^G-nitro arginine inhibits NANC relaxations, guinea-pig, 100, 661
 - , papillary, effect of RS 30026 on, guinea-pig, 99, 687
 - , role of endothelium and Ca channels in endothelin-induced contraction, human cerebral arteries, 99, 439
- , tracheal, induction of hyperreactivity by K⁺ channel blockade, rat, 101, 541
- , vascular, interactions of spironolactone with (+)-[³H]-isradipine and (–)-[³H]-desmethoxyverapamil binding sites in, 101, 6
- , vascular, sources of calcium for contractions mediated by α -adrenoceptor subtypes in, 99, 253
- Smooth muscle, airway**, PAF-induced hyperresponsiveness, contribution of platelets in, rabbit, 101, 31
- , relationship between endothelin-1 binding site densities and constrictor activities in, 100, 786
- Smooth muscle (bovine tracheal)**, characterization of muscarinic receptor subtype in phosphoinositide metabolism in, 99, 293
- Smooth muscle cell**, effects of tetraethylammonium and 4-aminopyridine on outward currents and excitability of, dog, 100, 507
- Smooth muscle muscarinic derivatives**, selectivity of hexocyclium derivatives for, 100, 150
- Smooth muscle, tracheal**, actions of second messengers synthesized by spasmogenic agents and their relation to mechanical responses in, dog, 100, 41
 - , modulation of fluoroaluminate-induced inositol phosphate formation by increases in tissue cyclic AMP, in bovine, 100, 646
- Smooth muscle, vascular**, action of enantiomers of dihydropyridine on different sites on voltage-dependent Ca channel of, 101, 3
- , effects of diltiazem on Ca concentrations in cytosol and on force of contractions in, pig, 101, 273
- , pathophysiology of impotence related to, male corpus cavernosum, 101, 375
- , responses to vasoactive substances, 101, 200
- Sodium channel**, effect of AFD-21 and AFD-19 on, cardiac muscle, 101, 803
- Sodium channels**, action of ciguatoxin on, frog, 99, 695
- Sodium cromoglycate**, effect on Sephadex-induced eosinophilia, rat, 101, 821
 - , in inhibition of neutrophil and eosinophil induced chemotaxis, 99, 798
- Sodium excretion**, effect of atriopeptin III on, rat, 99, 317
- Sodium nitroprusside**, effect on renal release of cyclic GMP and vascular tone, rat, 99, 364
 - , modulates fibrinolytic system, rabbit, 101, 527
 - , vasodilatation by acetylcholine, effect of L-NMMA on, skeletal muscle, rabbit, 100, 463
- Soman**, action on muscarinic hyperpolarization in parasympathetic ganglia, cat, 99, 157
- Somatosensory cortex**, GABA_B-related activity involved in synaptic processing in, 100, 689
- Somatostatin**, effect on calcium inward current, guinea-pig atria, 99, 587
 - , effect on withdrawal contractures, guinea-pig ileum, 101, 908
- Sorbinil**, in prevention of inhibitory effect of streptozotocin-induced diabetes on motor transmission, rat detrusor, 101, 411
- Sotalol**, rate-dependence of electrophysiological effects of in combination with lidocaine in cardiac Purkinje fibres, dog, 99, 124
- Sotalol**, effect on ischaemia-induced myocardial damage, canine heart, 99, 577
- Spantide**, pharmacological profile of, 100, 711
- Spasmogenic agent-induced contraction**, on application of carbachol, 5-HT, histamine and STA₂, dog tracheal smooth muscle, 100, 41
- Spinal cord**, development of tolerance to effects of vagabatrin on GABA release from rat, 100, 324
- Spinal transmission**, effect of CNQX on, rat, 100, 850
- Spiperone**, effect of 5-HT_{1A} receptor antagonist action of in von Bezold-Jarisch reflex, rat, 100, 575
- Spontaneously hypertensive rat**, effect of endothelin on vascular sensitivity, 100, 107
 - , mechanism of 8-OH-DPAT-mediated inhibition of plasma insulin in, 100, 173
 - , reactivity and sensitivity of mesenteric vascular beds and aortic rings of to endothelin: effects of Ca entry blockers, 100, 31
- Spirostanolactone**, interactions with (+)-[³H]-isradipine and (–)-[³H]-desmethoxyverapamil binding sites, vascular smooth muscle, 101, 6
- Spiroxatrine**, effect on e.p.s.p., rat hippocampus, 101, 171
- Staurosporine**, attenuates effect of PDBu and bradykinin but not of RTX or capsaicin, neonatal rat tail, 99, 323
 - , effect on endothelin- and carbachol-induced contraction, guinea-pig trachea and rat aorta, 100, 383
 - , effect on inotropic responses, ventricular papillary muscle, rat, 100, 207
 - , effect on neutrophil respiratory burst activated by receptor stimulation and post-receptor mechanisms, human, 100, 819

Stenosis, enhanced coronary vasoconstrictor responses to 5-HT in presence of coronary artery, dog, 100, 153

Streptozotocin-diabetes, prevention of impaired induction of ornithine decarboxylase activity by ponalrestat in, 101, 978

—, inhibitory effect on non-cholinergic motor transmission in detrusor and its prevention by sorbinil, rat, 101, 411

Stress, effect of capsaicin-sensitive sensory nerves on plasma glucose and catecholamine levels during 2-deoxyglucose-induced, rat, 100, 523

—, prevention by FG 7142, 101, 599

Striatum, effect of cholecystokinin sulphated octapeptide on endogenous dopamine release in, rat, 99, 845

—, effects of acute and chronic clozapine on dopamine release and metabolism in, rat, 100, 774

—, regulation of synthesis and metabolism of dopamine after disruption of nerve conduction in, 99, 741

Strontium, in inhibition of Na^+/K^+ pump activity, peritoneal mast cells, rat, 100, 453

Substance P, aerosolised, effects of on lung resistance, guinea-pig, 100, 69

—, angiotensin converting enzyme inhibitors potentiate bronchoconstriction induced by, guinea-pig, 100, 502

—, effect on superoxide anion production, alveolar macrophages, guinea-pig, 100, 417

—, pharmacological profile of, rat spinal motoneurones, 100, 711

—, trophic effect on parotid glands, 101, 853

Substance P analogues, and NMDA-induced response, mouse, 101, 307

Substantia nigra, actions of cocaine on, rat, 99, 731

—, electrophysiological characterization of agonists at GABA_B receptors in, 101, 949

Substantia nigra zona compacta, inhibition by L-DOPA, rat, 100, 257

2-Substituted indazolinones, inhibition of leukotriene B_4 synthesis by, 99, 113

Succinate dehydrogenase, in influence of β -adrenoceptors on cold adaptation, rat, 99, 673

Sulphidopeptide-leukotrienes, inhibition of release of by nedocromil sodium, human lung, 100, 247

Sulphipyrazone, in inhibition of effects of lactate in simulated ischaemia, 100, 477

Sulphonylureas, excite glucoreceptive ventromedial hypothalamic neurones by indirect inhibition of ATP-K⁺ channels, 101, 531

Sumatriptan, blocks neurogenic oedema in dura mater, 99, 202

—, (GR43175), inhibition of cyclic-AMP accumulation by, dog isolated saphenous vein, 99, 219

Superoxide, neutrophil, K252a, staurosporine and, 1001, 819

Superoxide production, effect of MK-886 on, human phagocytes, 100, 15

Suramin, antagonism of ATP-receptor-operated membrane current in PC12 phaeochromocytoma cells, 101, 224

—, antagonism to responses to P₂-purinoceptor agonists and purinergic nerve stimulation, guinea-pig urinary bladder and *Taenia coli*, 99, 617

—, antagonist at P_{2x}-receptors, rabbit ear artery, 101, 645

Swim stress, antagonism of by naltrindole, rat, 100, 685

Sympathetic preganglionic neurones, influence of 5-HT agonist and antagonists on, rat, 99, 667

Sympathoinhibitory effects, of K⁺ channel openers in spontaneously hypertensive rat, 100, 557

Synaptic transmission, opioid receptors in, mouse, 101, 505

—, sensitivity to agonist and antagonist properties of 5-HT₁ ligands, rat, 101, 171

Synaptosomes, receptor-mediated inhibition of ⁴⁵Ca accumulation into, 101, 140

—, tryptophan uptake and efflux following central 5-HT neurone lesion, 101, 981

Systemic blood pressure, effects of helodermin, helospectin I and helospectin II compared with VIP, 99, 526

Systemic haemodynamics, effect of EMD 52692, pig, 101, 605

—, effect of nimodipine on, pig, 100, 277

T

Tachycardia, 5-HT-induced mediated by 5-HT₄ receptor, pig, 100, 665

Tachykinin antagonist, spantide, pharmacological profile of, 100, 711

Tachykinin receptors, analysis of [³H]-senktide binding to, guinea-pig ileum and cerebral cortex, 99, 767

—, in inositol phospholipid hydrolysis in peripheral tissue, 101, 1001

—, mediate contractile response of circular muscle, ileum, guinea-pig, 101, 996

—, on alveolar macrophages, guinea-pig, 100, 417

Tachykinins, ability to induce contraction of endothelium-denuded pulmonary artery, rabbit, and trachea, hamster, 100, 588

—, in ileum, guinea-pig, 101, 996

—, response of human fibroblasts to, mediated by NK₁-receptors, 100, 11

Tacrine, stimulation of neurosecretion at motor endplates by, mammal, 100, 487

Taenia coli, antagonism of purinoceptors by suramin in, 99, 617

TEA, induction of non-specific airway hyperreactivity to cooling, 5-HT and ACh in blockade of K⁺ channels, rat trachea, 101, 541

Temperature dependence, of desensitization induced by ACh and histamine, guinea-pig, 100, 636

Tension, resting, on effect of basal and stimulated EDRF release, 100, 767

Ternary complex mechanism, detection of errors in agonist affinity estimation by operation of, 101, 55

Tetanus toxin, prevention of neuronal loss produced by, by NMDA receptor antagonist MK801, hippocampus, rat, 101, 776

Tetradecapeptide renin substrate, in local formation of angiotensin II, effect of endothelium, rat aorta, 100, 237

Tetraethylammonium, effect on outward currents and excitability in tracheal smooth muscle cells, dog, 100, 507

—, and effects of cromakalim on smooth muscle, guinea-pig bladder, 99, 779

Tetrahydroaaminoacridine, stimulation of neurosecretion at motor endplates by, mammal, 100, 487

Tetrodotoxin, antagonism of effect of ciguatoxin in quantal transmitter release, frog motor nerve terminals, 99, 695

—, blocks effect of veratridine on ACh-induced catecholamine secretion in absence of Ca²⁺, 101, 67

—, lack of effect on ability of epithelium removal to potentiate ACh, trachea, guinea-pig, 100, 516

Thalamus, calcium current reduction by anticonvulsant succinimides in, 100, 800

Theophylline, effect on myocardial reactive hyperaemias, dog, 100, 95

Thiols, role in tolerance to hypotensive effects of glyceryl trinitrate, rat, 99, 825

Thiorphan, effect on sensitivity to vasoactive intestinal peptide following epithelium removal, airway smooth muscle, guinea-pig, 100, 73

THIP, in synaptic processing of somatosensory information, S1 cortex, cat, 100, 689

Thromboxane, action of bradykinin dependence on stimulation of cyclo-oxygenase pathway to produce, in elicitation of vasoconstriction, canine veins, 99, 461

—, effect on vasoconstrictor response to arachidonic acid, kidney, rat, 100, 336

—, increase in by ethanol, gastric and colonic mucosa, human, 99, 289

—, role in effect of PAF on vascular permeability, airways, rat, 101, 896

Thromboxane A₂, competitive antagonism of glibenclamide of, coronary artery, dog, 100, 375

Thromboxane synthase inhibitors, effect on bradykinin-induced tension canine veins, 99, 461

Thromboxane synthesis, benzodiazepine analogues inhibit, human platelets, 101, 920

Thyrotropin releasing hormone, comparison with di-methyl proline TRH on pituitary GH₃ cells, 101, 615

Tifluadom, effect on renal excretion, rat, 99, 181

Tolbutamide, inhibition of ATP-K⁺ channels, rat, 101, 531

Toluene diisocyanate, modulation of contractile response to, urinary bladder, rat, 100, 886

Torbaftylline, effect of vascularisation and fibre type of skeletal muscle subjected to limited blood supply, rat, 99, 786

Torpedo electroplaques, relative potencies for barbiturate binding to acetylcholine receptor in, 101, 710

N- α -Tosyl-L-arginine methyl ester, effect of vascular tone of blood vessels and endothelial cells, 101, 145

TP-Receptors, role in bronchoconstrictor effect of inhaled PGD₂, guinea-pig, 100, 761

Trachea, guinea-pig, mechanism of endothelin-induced contraction in, comparison with rat aorta, 100, 383

Trachea and bronchi, guinea-pig, modulation of cholinergic neurotransmission in by opioids, 100, 131

Tracheal and bronchial vasodilatation, in response to cigarette smoke, nicotine and capsaicin, 100, 535

Trachealis, modulation of reactivity by respiratory epithelium, guinea-pig, 99, 369

Trachealis muscle, effects of epithelium removal on relaxation of, induced by vasoactive intestinal peptide and electrical field stimulation, 100, 73

Transmitter release, effect of butanedione monoxime on, 100, 467

- , facilitation by ryanodine, neuromuscular junction, mouse, 100, 114
- Tropomyosin**, effects of reported Ca^{2+} sensitizers on rates of Ca^{2+} release from, 100, 779
- Troponin C**, effects of Ca^{2+} sensitizers on rates of Ca^{2+} release from cardiac, 100, 779
- Tryptophan**, synaptosomal transport following 5-HT neurone lesion, 101, 981
- Tumour necrosis factor**, relationships between eicosanoids, platelet-activating factor and, as mediators of endotoxin-induced shock, mice, 99, 499
- T-Type Ca^{2+} current**, nicergoline inhibits in hippocampal CA1 pyramidal neurones, rat, 100, 705

U

- U50,488**, effect on renal excretion of water and electrolytes, rat, 99, 181
- U-62066E**, inhibition of elevated arginine vasopressin secretion in response to osmotic stimulation and acute haemorrhage by, 99, 384
- Up-regulation**, induced by reserpine, dog, 101, 329
- Urethane**, effect on axonal currents, olfactory cortex, rat, 101, 217
- Urinary bladder**, antagonism of purinoceptors by suramin in, 99, 617
 - , human, motor response to neuromedin U-8, 99, 186
 - , inhibitory effect of streptozotocin-induced diabetes on non-cholinergic motor transmission in, rat, 101, 411
- Use-dependent block**, induced by pirmenol on V_{\max} and conduction, ventricular myocardium, guinea-pig, 99, 815
- Uterus**, refractoriness of to tocolytic and biochemical effects of ANP, rat, 100, 341

V

- Vagus nerve**, species related differences in characterization of 5-HT₃ receptors, 101, 591
- Vas deferens**, effects of neuropeptide Y/peptide YY fragments on electrically-evoked contractions of, rat, 100, 190
 - , rabbit, rat, hamster and mouse, κ -opioid agonists in, 101, 944
- Vascular injury**, role of NO in maintaining vascular integrity in endotoxin-induced intestinal damage, rat, 101, 815
- Vascular reactivity**, endotoxin and, 101, 913
- Vascular resistance**, change in potentiates increased reactivity of the mesenteric vascular bed of spontaneously hypertensive rat to endothelin-1, 100, 31
- Vascular sensitivity**, induced by reserpine, dog, 101, 329
- Vascular smooth muscle**, inhibitory effect of pinacidil in, rabbit and guinea-pig, 101, 581
 - , mechanism of nitroglycerin-induced relaxation, pig, 101, 545
- Vasoactive intestinal peptide**, effects of epithelium removal on relaxation of airway smooth muscle induced by, 100, 73
 - , comparison with vascular effects of helodermin, helospectin I and II, 99, 526
 - , co-release with PHI by peripheral and central vagal stimulation, dog stomach, 100, 231
 - , trophic effect on parotid glands and sublingual glands, rat, 101, 853
- Vasoconstriction**, enhanced 5-HT-induced of coronary arteris after stenosis, dog, 100, 153
 - , mediation by P₂-purinoceptors on vascular smooth muscle, rabbit knee, 99, 379
 - , thromboxanes and prostaglandin endoperoxides in mediation of bradykinin-induced, canine jugular and femoral veins, 99, 461
- Vasodilatation**, induced by EDRF and ANF, rat kidney, 99, 364
 - , mediation by P₁ purinoceptors on vascular smooth muscle, rabbit knee, 99, 379
 - , produced by acyl carnitine esters in isolated perfused heart of rat, 99, 477
- Vasodilatation, endothelium-dependent**, role of G-proteins, K⁺ and Ca channels in, rat, 100, 427
- Vasopressin**, central inhibition by γ -aminobutyric acid and muscimol of release of, rat, 99, 529
 - , comparison of vasoconstrictor and vasodilator responses to, superior mesenteric vascular bed, rat, 99, 427
 - , effect of cyclo-oxygenase blockade on renal actions of, rhesus monkey, 99, 750

- , effect of κ -opioid receptor activation on secretion of, in response to osmotic stimulation and acute haemorrhage by U-62066E, 99, 384
- , endotoxin impaired responsiveness to, rat, 101, 913
- , in pathogenesis of chronic renal failure, 100, 79
- , hepatic receptor of, antagonism by calcium of, for agonist interaction, 100, 5
- , non-mediation in stress-induced antinociception, mouse, 99, 243
- , role in cardiovascular effects of central injection of ACh, dog, 100, 471

- Vasopressin antagonist**, SK&F 105494, effect of cyclo-oxygenase blockade on renal actions of, rhesus monkey, 99, 750

- Ventral medulla**, hypotensive effects of 8-OH-DPAT and 5-methylurapidil after stereotaxic microinjection, rat, 99, 713

- Ventral tegmental area**, actions of cocaine on, rat, 99, 731

- Ventricular fibrillation**, pharmacological analysis of, 100, 530

- Ventricular myocytes**, effect of ryanodine and caffeine on Ca-activated current in, guinea-pig, 101, 399

- Ventricular myocytes, single**, effects of AFD-21 and AFD-19 on, guinea-pig, 101, 803

- Ventromedial hypothalamus**, tolbutamide inhibition of ATP-K⁺ channels in, 101, 531

- Verapamil**, cardiovascular responses to in presence of blood gas abnormalities, 100, 102
 - , effect on established ventricular fibrillation, 100, 503

- Veratridine**, in role of Na⁺ in muscarinic receptor-mediated catecholamine secretion in absence of Ca²⁺, adrenal glands, cat, 101, 67

- Vigabatrin**, development of tolerance to effects on GABA release from cerebral cortex, spinal cord and retina, rat, 100, 324

- γ -Vinyl-GABA**, development of tolerance to effects of on GABA release, cerebral cortex, spinal cord and retina, rat, 100, 324

- V₁-subtype receptors**, regulation of affinity and capacity characteristics of by calcium, 100, 5

- von Bezold-Jarisch reflex**, role of central 5-HT_{1A} receptors in, rat, 100, 757

W

- WEB 2086**, anti-anaphylactic activity of, modified by booster injection of antigen during active sensitization, guinea-pig, 100, 217

- , as competitive antagonist against PAF-evoked platelet aggregation in plasma, rabbit, 100, 163

- , attenuation of leakage in airways of guinea-pig, 101, 739

- , differential inhibition of acute inflammation by, mouse, 99, 164

- WEB 2170**, differential inhibition of acute inflammation by, mouse, 99, 164

X

- Xamoterol**, effect on cardiac β -adrenoceptors, rat, 99, 27

- Xanthines**, antagonism of inhibitory adenosine receptor at neuromuscular junction and hippocampus by, rat, 101, 453

Y

- Y₂-receptor**, 12 C-terminal amino acid residues of NPY and PYY minimum length required to activate, 100, 190

- Yohimbine**, effect on noradrenaline-induced contractions, thoracic aorta, rabbit, 101, 662

- , in inhibition of ATP-sensitive K⁺ channels, pancreatic β -cells, mouse, 101, 115

- , reversal of lithium-induced effects blocked by pretreatment with, rat, 100, 283

- [³H]-Yohimbine**, labels α_{2A} - and α_{2B} -adrenoceptors, rat brain, 99, 803

Z

- Zacopride**, induces increase in EEG-energy, rat, 101, 281

- Zinc**, differential effect on vertebrate GABA_A-receptor complex, 99, 643
 - , in inhibition of phospholipase activities in human lung, 100, 447

- ZK110841**, in characterization of DP-receptors, 99, 13

- Zymosan**, kinins in inflammatory exudates induced by, rat, 101, 418

- Zymosan-induced peritonitis**, antinociceptive activity of paracetamol in, role of prostacyclin and reactive oxygen species, 101, 869

British Journal of Pharmacology

Instructions to Authors	3
Nomenclature Guidelines for Authors	11
Index to Volumes 99, 100 and 101	13